© T. van der Luer 2005

Determinants of Open Source Software Adoption

Final Thesis

Maastricht University

Faculty of Economics and Business Administration
Maastricht, July 2005

van der Luer, T.L.H.

1029440

International Business

Final Thesis

Thesis supervisor: Drs. M. Vluggen

© T. van der Luer 2005

© T. van der Luer 2005

Abstract

This thesis presents a descriptive study towards the determinants of the adoption of Open
Source Software (OSS) in for-profit organizations. Based on a literature review on open
source and OSS in general, in combination with a review of research in technology innovation
adoption and diffusion, several relationships are hypothesized between expected influential
factors and OSS adoption. In total, twenty-two relationships are proposed.

Based on a survey among IT managers in for-profit organizations, eighty-four
responses were gathered for statistical analyses. Due to the large number of variables
compared to a small sample size, the number of hypotheses that could be tested in the final
model had to be reduced to eight (out of twenty-two). The variables which were eventually
included are: task compatibility, skill compatibility, compatibility, triability, software costs,
continuity, third party support, and top management support. The dependent variable was the
binary adoption decision on OSS: yes or no. Three variables were found to be relevant:
Perceived task compatibility, compatibility, and triability. In addition, source code availability
and software quality were found to be less important.

A possible explanation for these findings could lie in the fact that this research treats
adoption as a binary decision, while many of the factors which have not been found relevant
might appear important at later stages than the adoption stage. In addition, the classic
innovation characteristics are found to be important for the adoption stage of OSS:

compatibility and triability.

© T. van der Luer 2005

Table of contents

ADSEIACT ... ————————— 3
List Of figUIres ... ——————— 7
INErOdUCHION ... 9
ProbIem STAtEIMENT.........cccuieeieeiieieeieeiteee ettt et ete e te ettt e eebeeseessaessaesnseenseesnnesnseenns 10
Significance Of the STUAYcoieriiriiriiie e 10
RESEATCH QUESTIONS ...ttt ettt 10
ThesiS OTGANIZALIONeeeuiieieeiieitieeie ettt ettt ettt sat e et e et esaeesaeeemeeeseesaeeeneeenee 10
Chapter 1 - The open source phenomenoncccccvrninerennns i ———— 12
Systems to organize IMNFOTMAtIONceeiieiiieiieie ettt e 12
L0 12 1 (TSRS 12
Historical development in software CO-OPErationc.cecvereeriresieeneenie e e eeee e 14
TYPES OF SOTIWATE ...ttt ettt e s eaesnseensaesneeenseenns 15
Proprietary SOTEWATEcvieciieiieeieecieeeece ettt ettt e s aesese e e snneeeseenes 16
Freeware and SharEWAarecccveciieiieiieiie ettt ee e e e sneeeneeenes 16
CommETCIal OSS.....ooiiiiiiiiee ettt et e et e e seaeenseenneeeeseeans 16
Non-commercial OSScciiiiiiiieieee ettt et 17
OPEN SOUICE TICEIMSESeovveerieeiieiiesiieeteeie et et e ebeebeesteessbeebeesseesssesnseessaesseessseenseesssesssennns 17
COPYIETt LICENSES ...vvievieeiieiieeiie ettt ettt e e bt e st eesveesbeessaeesseesseessaeseseenseessseseseenns 17
NON-COPYIETE LICENSESvvvieerieeiiie et esree ettt rree ettt ste e e e e e sereessbeeessseessnaeesssaeessneeans 17
OSS 1N thiS PAPET...eveieriiieiiie ettt ertte et et et e e sr e e e tae e sebeesstreesstaeesssaeasssaesssseessseeasssens 18
OSS dEVEIOPIMENLE ISSUESuveeeiieieeiieeiieeieeieesee et esteesseeeteeeeeseeesesseeseesneesnseenseesneesnseenns 19
AUthOTILY DY COMPELEIICEeeueiieiiieiieiieciie ettt seee et eseee e s e sneeeneeenes 19
Participative 1€aderShipc.ceoiieiieiieiece e e 20
ModUlar ProJECt SLIUCLUTESccuveeieecieeieerieeieetesteeteete et e setesaeeseesseesssesnseenseesnsesnseenns 21
Paralle]l 1€1€aSE POLICYcvieciieiieeiieieeteete ettt st seeeseaesese e s e snneenseenne 21
Motivation Credit POLICYccviiriieiieciieceesie ettt e ere ettt e e e ebeebeeseeessbessseesseesssessseenns 21
Transparent COMMUNILY OTZANIZALION.eccveerreerrrerreereesieerereereereeseeesssessseesseesssessseenns 22
Tools for communication and SUPPOTLecveeeveerierieeiieriierie e ereeseeesreeeneereeseeeeeseenne 22
OSS USADIIILY ...ttt ettt ettt e b et e e st enteeneenseeneeneens 23
OSS demMand & SUPPLY .eeccvveeeiieeiieee ettt rree e e s tae et eesbeesreae e ssaesstaaesnnaeesrens 24
Demand fOr OSS ...ttt sttt e e et enee e 24
SUPPLY OF OSS ettt et e st e e te e st e seesneeebeenneeenees 26
Total COSt Of OWNETSNIPeovieiiieiieieee ettt e e e 28
Importance of third Party SUPPOTL........cceeriereiierieiierie et s e 29
L0703 3Te] 11 S 107 o FO TSRS 30
Chapter 2 - Adoption and diffusion of innovationscccccceeeeririieiiiecicccccccc, 31
TheE INNOVALION PIOCESS. .. .eeeuteetieitieeieeteestteete et e attestte et eteesbeesaeeeaeeeseesseesseeenseenseesaeesneeenes 31
Innovation adoption, diffusion and INfUSIONccccveerciieiiiiieriieeee e 31
Innovation diffusion T€SEArCh..........cc.iiiiiiiiiii e 32
Classical innovation diffusion WOTKScceeriiriiiiiiieieee e 32
Diffusion of Innovations (DOI)......cccuiiiiiiiiiiiiiie et 32
INNOVAtION ChATACIETISTICS ietieeireiieiieeie ettt ettt ee e eeee e 33
Extending the classical DOI theoryccciviiieriiiieniiieneeeseeeeteee e 34
Managerial INTUEINICESccveriieiieieeiecee et ettt et e e seseeseeseeeenseenns 34

© T. van der Luer 2005

Organizational AdOPLIONceeeeviieiciie et ste et e ee e sre e et e e etreesereeesereessseeesrseeassnens 34
INEIWOTK €XEEIMAIITIES ...evvvvviiiiiei it e e eeerrr e e e e e ee s ar e e e e e e e e essaabrrereeeeeens 35
KNOWIEAZE DATTIETSeeeieeiieiieee ettt sttt et e et e eeee e 37
Environmental FACTOTScovvuviiiiiiiii et e e e e e e e enraaaees 38
) ATV o Lo A7 15 (o) o I PSSR RRRRRR 39
Diffusion Of IT INNOVALIONSuveviiiiiiiiiiieiiieee ettt e e e ee ettt e e e e e e e st e e e e e e e e e sssnnaaaees 39
Frameworks for organizational diffusion of IT..........ccccoveviiiiiiciiiniee e, 41
IT AdOPLION CONTEXES....uvirrierieiiieeiieteeseestesteesteesteessbeebeesseesseesebeesseesseesssessseesseesssesssennns 42
OS a8 AN IT INNOVALIONcoouviiiiiieiie ettt e et eeeeaae e e et e e e enaae e e e enaaeeeeeenseeeeeennes 43
COMCIUSIONcvvieetieeeiiee ettt ettt ettt ete e et e e e teeeetaeeeeteeeeareeeeteeeeateseesseeesseeesseeetreeeseeenanens 45

Chapter 3 — OSS adoption: Framework, determinants, and hypothesized

relatioNShIPS ..o ananne 46
Open source adoption MOAEL.........ccc.iiiiiiiiiiiee e 46
Classification scheme for OSS adoption determinantsccecueeeeveereerieneenienieeneneenens 47

TEO SCREIME ...ttt ettt et e e e sbe e e e s e snsesnseensaesnseenseeans 47
IT diffusion and assimilation SChEME...........ccceerierieriieeieiee e 48
Factors influencing OSS adOption.........ccceevueriiieniinieniiieniteeseeeetee e 49
OSS - organization COMDINALIONcccueeeiieriieriieieerteste et eeee e seeesae e e seeeeeeeenes 49
Organizations & adoption ENVIFONIMENTccveeereerreerieeereesreerreereesseeseesseesseesseessseenns 56
OVErvVIEW Of NYPOTRESEScuveiviieiieiiieieeieee ettt sebe s e saeeeeneenns 59
COMCIUSION. ...ttt ettt sttt et b et s et et e sbeentesseentesseensesneennens 60

Chapter 4 — Research methodologyccccoiiiccicmmmirninnccserre e 61
RESEATCH A@SIZN....cuiiiiiiiieeeee ettt ettt et e e e enee e 61
Operationalization of Variablescccoeiieiiiriieiieeeeee et 61
Data collection PrOCEAUTE........c.eeiiieiieiieiieeie ettt ettt seee e e teeseaessaesnseenseesneeenseenns 64
SAMPLE ...ttt ettt e et 64
Instrument Validation...........cceeeieiiieciieiieieee ettt s sere s e seeeeeseenns 67

REIIADIIIEY ..ottt ettt ettt ettt et ettt 67
VAlIAIEY 1ttt ettt ettt ettt st 68
L070331e] 11 103 o FO USSR 69

Chapter 5 — ReSUILScccoiiiiiiiiissssseses s 70

DESCTIPIIVE STALISTICS ..uvteueieieeiieeiie et et et et e et e e st e et et e et e et e eateenseesseesseesnseenseesneesnseenns 70
Independent variables..........ccoooiiiiieiieiee e 70
Dependent Variable..........c.oeciiiiieciieiieeecie e eeee e 72

MUltIVAriate ANALYSISeccvieeieeeiieiieeieeseeste e ete et e see e ebe et e ssaeenseeseessaesssesnseenseesnsesnsennns 73
DAt ISSUCS .euveieeteeiteeteeite ettt ettt ettt et e bt et et e st et e e st e s bt e st et e en e e bt s et et e ebe et e nt et saeenaes 73
RESUILS ..ttt ettt ettt st ae et et be e 76
Alternative regresSion ANAlYSESc.ucvieiieiiieciierieeteeteesteesteeeeeesseesreeesseesseesseessseesseesseens 77

L070331e] 11 103 o FO USSR 78

Chapter 6 - Discussion of resultsccccccmmmrm s ————— 79

DIASCUSSION ..ttt ettt ettt et e st e et e et e s atesaeeeabe e st esseeeaseenseenseesneesnseenseesneesnseenns 79
Relevant variables in the modelccoooiiiieiiiie e 79
Irrelevant variables in the MOdel..........coeiiiiiieiiiiiece e 80
Discussion of the MOdelccooeiiiiiiiiieie e 80

© T. van der Luer 2005

Implications fOr MaNAEMENL...........cccvveerieeriiie e eeeerree et ereeerreeetreesebeeesereeeeaeessseeenens 83
000 1215 () 0 TSRS 84
Suggestions for future reSEarchooeiieiiieiiieii s 85
Bibliography ... —————————————————— 87
APPENAICEScoiiieirrir i 93
Appendix A: Open SOUTCE tIMEIINEcccvieiiieriieiieeieeieeee e et et eseeeeeeereereesereesseenseens 93
Appendix B: The OSD LICENSE.......ccoierierieeiieieeiie et esieeseteereesseeseaessseesseeseessseesseeseens 95
Appendix C: Overview of SOftWware liCENSES.........cccuieciiiriierieeieeiiereeeee e 97
Appendix D: Motivations of open source deVelopers.........ccvevciveircreeerieenreeereeeieeeeree e 98
Appendix E: Changes in the strategic value of applications...........ccceevveevcreeerveenriveesveeennn 99
Appendix F: Sample of successful open source software...........ccoeeceeviveeieiiinienieeieeen. 100
Appendix G : The qUESTIONNAITEc.eeiuieiieiieeiieie ettt reeeee et et eeeee et seeseeeeneeeneeas 102
Appendix H: Selection of independent variables...........cccocoeeriiriiienieneeieeeeeee e 113
Appendix I: Hypothesized relationship of OSS liCenSsescccevverveverieneneenenienienene 114
AppendiX J: SPSS OULPUL ..ottt st 115

© T. van der Luer 2005

List of figures

a

Figure 1. The software production process (in the case of Java, from source code to
running program). From: Computing concepts with Java (p. 27), by C. Horstmann,
2003, New York: John Wiley & Sons, Inc. Copyright 2003 John Wiley & Sons, Inc.

Figure 2. Categorization of software. From: FLOSS final report - part 3: free/libre
and open source software: survey and study. Basics of open source software markets
and business models (p. 4), by Berlecon Research GmbH., 2002, Berlin: Berlecon
Research. Copyright 2002 Berlecon Research.

Figure 3. Software value chain. From: FLOSS final report - part 3: free/libre and
open source software: survey and study. Basics of open source software markets and
business models (p.23), by Berlecon Research GmbH., 2002, Berlin: Berlecon
Research. Copyright 2002 Berlecon Research.

Figure 4. The applications portfolio. From: Strategic planning for information systems
(p. 301), by Ward, J. & Peppard, J., 2002, Chichester: John Wiley & Sons, Ltd.
Copyright 2002 John Wiley & Sons, Ltd.

Figure 5. Software product categories. From: FLOSS final report - part 3: free/libre

and open source software: survey and study. Basics of open source software markets
and business models (p. 30), by Berlecon Research GmbH., 2002, Berlin: Berlecon

Research. Copyright 2002 Berlecon Research.

Figure 6. Determinants of available OS applications. From: The cathedral versus the
bazaar (With apologies to Evic S. Raymond): An economic and strategic look at open-
source software (p. 6), by Blecherman, B. (1999). Copyright 1999 B. Blecherman.

Figure 7. Application portfolios in different contexts. From: Strategic planning for
information systems (p. 304), by Ward, J. & Peppard, J., 2002, Chichester: John Wiley
& Sons, Ltd. Copyright 2002 John Wiley & Sons, Ltd.

Figure 8. IT innovation adoption context. From: Information technology diffusion: A
review of empirical research (p. 195-206), by Fichman, R.G., (1992). Copyright 1992
R.G. Fichman.

Figure 9. Model for open source adoption. From: A conceptual model for enterprise
adoption of open source software (pp. 274-301), by Kwan, S.K., & West, J., (2005). In
S. Bolin (Ed.), The standards edge: Open season Ann Harbor, Michigan: Sheridan
Books. Copyright 2005 Sheridan Books.

Figure 10. Classification scheme of determinants of OSS adoption. From: The
diffusion and assimilation of information technology innovations, by Fichman, R.G.,
(2000). In R.W. Zmud (Ed.), Framing the domains of IT management.: Projecting the
future through the past (Chapter 7). Cincinnati, OH, Pinnaflex Educational Resources,
Inc. Copyright 2000 Pinnaflex Educational Resources, Inc.

© T. van der Luer 2005

o Figure 11. Platform standards. From: Why firms adopt platform standards: A
grounded theory of open source platforms (presentation, sheet 10), by West, J., &
Dedrick, J. (2003). Copyright 2003 West, J., & Dedrick, J.

a Figure 12. Open source adoption rates.

a Figure 13. Shifts in strategic importance of applications in the applications portfolio.
From: A conceptual model for enterprise adoption of open source software (pp. 274-
301), by Kwan, S.K., & West, J., (2005). In S. Bolin (Ed.), The standards edge: Open
season Ann Harbor, Michigan: Sheridan Books. Copyright 2005 Sheridan Books.

© T. van der Luer 2005

Introduction

The software market exhibits certain, rather strange, or at least, unexpected, effects these
days. Software in many categories, for many different tasks, and many different users, is
freely available without the need to make any kind of financial commitment. Just download
the software, install and freely use it. Questions or problems? Just visit the website of the
program and present your question. Probably you will get a proper answer within 48 hours.

The phenomenon that is referred to just now is open source software. Open source
software refers to all kind of computer programs that are distributed under certain non-
restrictive licenses. The inner workings (i.e. source code) of these programs are for anyone to
see, change, modify, and even distribute. With the Linux operating system as its most known
creation by the public, open source software has been relatively unheard of by the great
majority of computer users.

Clearly, open source software offers some advantages over other kinds of proprietary
licensed software. Often mentioned are direct and indirect advantages following from the
availability of the source code (e.g. customization, safety, reliability) and the absence of
license fees. However, open source did not have the level of attention of businesses that it
maybe should have been given for a long time.

Currently the number of people, organizations, and business that are consciously
aware of the developments and opportunities offered by this movement is growing fast, not
unimportantly spurred by the internet. Since 1998 this interest for open source software and
the open source software development process has gained increased attention by many types
of organizations. Three factors contributed to this rise in interest (Lerner & Tirole, 2001):

o Rapid diffusion and, in some cases, dominance, of a number of open source software
packages. Examples are the Linux operating system and Apache web server.

o Large capital investments by major industry players in open source software.

o The innovative organizational structure of open source development projects.

Although there are aspects that favor the use of open source software it is not really
clear what influences the adoption and diffusion of open source software in for-profit
organizations. Why does a firm adopt a certain open source software package? What aspects
of open source products provide the argument for a firm to adopt? How are they related to the
size or structure of a firm? What differentiates open source from other software and makes it

so innovative and attractive to adopt? This leads to the problem statement of this thesis.

© T. van der Luer 2005

Problem statement

The problem statement of this thesis follows from the discussion above:

Which factors influence the adoption of open source software among for-profit firms?

Significance of the study

While this problem statement relates to a vast amount of literature and research in the field of
technology innovation and diffusion (Rogers, 1995; Tornatzky & Fleisher, 1990; Fichman,
1992), and research on open source software has been increasing over the last years
(Bonaccorsi & Rossi, 2003a, 2003b; Lerner & Tirole, 2000; Krogh & Hippel, 2003; West,
2003), there has not been a lot of empirical research in this area, with the notable exceptions
of Chau & Tam (1997), Berlecon (2002a, 2002c), and Ghosh & Glott (2003). Therefore, this

thesis is expected to add some useful insights to the existing research literature on this topic.

Research questions

To guide the discussion and provide a pathway for finding a satisfying answer to the problem
statement the following research questions are proposed:
1. What is open source software ?
2. To what extent is open source software an innovation ?
3. To what extent is the adoption and diffusion of information technology innovations
different from other types of innovations (i.e. not information technology related) ?
4. Which determinants have been identified as influencing the adoption and diffusion of
innovations ? How can they be categorized ?
5. Which determinants are likely to have a significant influence on the adoption and

diffusion of open source software ?

Thesis organization

Chapter 1 discusses the open source phenomenon by reviewing literature on the subject. It
explains how open source came about, what it does embrace and what it does not. The chapter
outlines the reasons for its success so far, the co-operative software development process in
open source projects, open source communities, and the role of for-profit organizations and
changing market dynamics. In summary, it will deal with research question one.

Chapter 2 contains a review of the major relevant literature studies on innovation

diffusion literature. Explicit attention is paid to research concerning information technology

10

© T. van der Luer 2005

innovations. The chapter identifies and lists the determinants for information technology
diffusion. Chapter 2 deals primarily with research question 2, 3 and 4 (partly).

Chapter 3 relates chapter 1 and 2, that is, it puts open source software in the light of
innovation literature and looks how it is related to information technology innovations. It will
connect the determinants of innovation diffusion in chapter 2 to open source software by
means of a number of hypotheses. This chapter deals with research question 5.

Chapter 4 describes the research methodology used to research the hypotheses brought
forward in chapter 3. Details are provided regarding the study’s population and the sampling
techniques used to identify them. Also, there will be an elaboration on the data collection
method and the data analysis procedures, including illustrations of how they were applied.

Chapter 5 presents the results of the research and the extent to which the hypotheses
could be confirmed or not.

Chapter 6 concludes this thesis with a review of the main findings. Moreover, it
proposes a number of practical implications following from these findings. Finally, the

limitations of this study as well as some suggestion for further research are made.

11

© T. van der Luer 2005

Chapter 1 - The open source phenomenon

This chapter introduces the reader into the main ideas of the concept of open source software
(hereafter OSS). A short review will be presented of the traditions in co-operative software
development followed by an explanation of OSS and licensing schemes that come with it.
Following, a discussion of several open source (hereafter OS) issues like the OS development
process, OS communities, and the types of OSS available. In the end a short conclusion will
be provided. First however, some background information into information systems and

software.

Systems to organize information

Information systems have been used by businesses for a long time to face a range of
problems. The following definition of Whitten, Bentley & Dittman (2001, p.8) is used to
define an information system as: “An arrangement of people, data, processes, information
presentation, and information technology that interact to support and improve day-to-day
operations in a business as well as support the problem-solving and decision-making needs of
management and users.”. The enabling IT consists of the different though highly related
aspects: hardware, software, and telecommunications technology.

As information systems developed over time so did the technology that provided for
these information systems: software, hardware, and telecommunications. Telecommunications
provide for the means to interlink different systems and clusters of systems to create networks
like the internet. Hardware includes the physical components that make up a computer
system. Software, simply stated, is a set of bundled computer instructions that tell the
computer hardware what to do. This software consists of source code that can be interpreted
by a computer machine. Since the concepts of software and source code are relevant to this

discussion, the next section will discuss these subjects in more detail.

Software

Software is not a physical product, but a set of manually typed instructions that tell a
computer what to do. At the machine level software consists of lines of code consisting of
merely ones and zeros, referred to as binary code. Composing such code is not very human-
friendly and for that reason higher level programming languages have been developed. These
languages contain the logic and structure of a program in somewhat comprehensible terms.

Lines of code in such a programming language are called source code (see figure 1).

12

© T. van der Luer 2005

Large software packages contain millions of lines of such manually typed code. Before
computers can interpret source code it has to be compiled into binary code since a machine
can only read ones and zeros. A graphical representation of this process in the case of a Java'

program is shown in figure 1.

Source code

2 EdiPad Pro
B Bt Project flock Bookmok Took Edra Convert Cpbions Wew Help
0k SaHdB » rmEmvyRa L B S -

———— Compiler

EMFRER] 18 FefiLiepa: | S ChossChckiovs | [Regedemacs |5 5 |

* Craxtes the ChessClock object for the supplisd Hatch &
* fparan match The Match that it baing Eimed.

v fparam bable The ChessTable object that i displaying = .
" —4I_|_|
public CTTEI (Nacch match, ChessTable table) [

aupek [(“ChaasClock™) ! /S /Give it & name 50 we cam
this,game = match.getGamelodel (|2 Class files
thig,table = eable; L
this.maceh = sarch! 4
this.monitorVhitesTims = match.geclyColoc(] == P Intefpreler .
Coler defaultferegeoundCalar = UlNManages,getlola E’_
table.gecTimeLabe l {(FieceColor . WHITE) . secForegeou RU"”'”Q
table.getTimelabel {Fiecefolor . BLACK) .setForegrou ngrﬂm
table.gecTimeLabe)l {Plecelalor , WHITE) . secTaxe {fox -trE
table.gecTimelabel {FieceColor . BELACK) . secText (for L] LI nl' ﬂlES

i ApuEieius) st d UL - -

N -
o . Byte code
53158 Irepsit FE08 W 123 7B

Figure 1. The software production process. In the case of Java, from source code to running program

Software comes in two types. The first is application software. These are programs
most of us are familiar with and use in everyday tasks like a word processor, spreadsheet or
internet browser. The second is system software?, which acts as a bridge between a system’s
hardware and application software. An example would be the famous Windows operating
system (Turban, McLean & Wetherbe, 1999).

Although different software programs are not exactly the same in terms of
functionality, layout, or programming language, still duplication occurs in programming.
Source code, and its underpinning ideas, can be reused to a certain extent. On the other hand,
the one-time investment needed for the development of a program becomes very high for
even moderately complicated software packages. Given the ease by which duplication can be
done, copying a program’s source code becomes very lucrative. Therefore intellectual
property rights are extremely important. Licensing policies commonly determine what can,
and cannot, be done with the purchased software. Software licenses exist in many forms, but
usually have to be bought for every individual end-user or machine.

However, purchasing a commercial license in most cases does not mean that you also
get the source code of the software you purchased. A license commonly only includes a

working version of the program based on the binary code. This binary code is useless in terms

! Java is a programming language.
2 Also referred to as platform or operating system.

13

© T. van der Luer 2005

of providing insights into the workings of the program. It could be somewhat compared to
going to a restaurant: you get the dish you ordered, but you do not get the recipe.

Since the marginal cost of sharing a digital good like a set of lines of code is almost
zero, sharing code would make sense as to minimize the overall duplication of effort among

software developers. This co-operation is the topic of the next section.

Historical development in software co-operation

The fact that programming is a time consuming effort on the one hand and that it is easy to
share and duplicate on the other hand would make sense for co-operation and code sharing
between software developers. As a matter of fact such co-operation has existed for a long time
and some periods in co-operation undertakings can be identified® (Lerner & Tirole, 2002).

During the first period, from the early 1960s to the 1980s, developing software was
largely an academic undertaking. Sharing source code was common practice among
programmers. The main focus was on developing an operating system for multiple hardware
platforms. This resulted in the Unix operating system and the C programming language.
These development efforts where shared among the development community, greatly
stimulated by the computer network Usenet. Software was distributed on basis of a nominal
charge without any claims on property rights of the source code. In the early 1980s problems
began to arise when AT&T began enforcing its intellectual property rights on Unix. Users had
to pay license fees to employ Unix. IBM, HP, and DEC followed AT&T by also starting to
develop proprietary versions of the Unix operating system (Lerner & Tirole, 2002). In
addition, many developers moved from universities to private software development firms,
where they were bound to non-disclosure agreements (Nuvolari, 2003).

As a response to these developments, some efforts where undertaken to formalize the
co-operative process. This is the second period, which took place from the 1980s to the early
1990s. The Free Software Foundation was founded in this era, which put forward some major
developments to keep co-operative developed software from getting under commercial
licenses. It came up with the GNU General Public License (hereafter GPL), which required
users to agree with the fact that the source code should be kept open. This restriction was not
only applicable to the original piece of software, but also for all other future developed

enhancements or extensions which in some way included the original source code. This so-

3 This discussion merely provides as a background to this thesis topic and is neither complete nor meant to be
complete. An overview of the main facts is given in appendix A. For a more complete discussion on the history
of collaborative software development see Lerner & Tirole (2002), G. Michalec (2002), Wayner (2000), or
Levy (2001).

14

© T. van der Luer 2005

called ‘viral’ or ‘Copyleft’ effect has not Source code open ?
made it useful for commercialization, since Yes No
. . Non-Commercial Freeware
it rules out any business models based on — open source Shareware
N E: software Demoware

. . . sl 5
license fees. At the same time, OSS projects g & Examples: :
developed a set of organizational E o | Linux & Apache [
characteristics which where used to guide E —

2 ah SOUMce
the development process, including strong § E. pﬁ.;,n-;.g::{"

. o

leadership and a core set of source code § Example:

£ Sugar CRM
developers (Lerner & Tirole, 2002). e

The third period was spurred by the Figure 2. Categorization of software

introduction of the internet and the world

wide web during the early 1990s. They greatly enhanced co-operation and collaborative
development efforts. In addition to the growth in the number of projects, commercial
companies also became interested. They started to provide support and consultancy services
for the freely available software programs. Besides, commercial companies were introduced
at the actual development of these programs, caused by the coming about of new types of
licenses. The ‘Debian Social Contract’ initiated this in 1995. The Debian Social Contract
allowed for less restrictive licenses which were not ‘viral’ in nature like the GPL license.
Thereafter it was possible to complement co-operatively developed code with proprietary
code for open source software released under such terms, and logically this was much more

interesting for commercialization (Lerner & Tirole, 2002). The next section will highlight the

different types of software in terms of price and source code availability.

Types of software

OSS is frequently referred to as ‘free’ software. However, ‘free’ is often meant as in ‘free
speech’ and not as in ‘free beer’®. Thus, free is a matter of freedom, not cost. The extent to
which OSS can be regarded as free as in ‘free beer’ is dependent on the license it is
distributed with and the purpose it serves. However, there is also proprietary software that is
free, and commercial software which is open source.

Commercial software is software developed and sold by a firm in order to make a
profit. Often this software is proprietary, but that is not always the case. Thus, ‘commercial’ is

not a stand-in for ‘proprietary’ (Fugetta, 2003). The different types of software classified by

4 Read more on free software on the website of The Free Software Foundation:
http://www.gnu.org/philosophy/free-sw.html

15

© T. van der Luer 2005

source code availability and price can be seen in figure 2. Next, a brief explanation of each

category’s characteristics.

Proprietary software

Most commercial software is proprietary, which means it costs money. Often its source code
is closed and modification or unauthorized distribution are forbidden. An example would be

the well-known Microsoft Office suite.

Freeware and Shareware

As the name implies, freeware means software without any financial cost. However, it comes
without the source code, is still copyrighted, and its modification tends to be limited.
Distributors of this kind of software hope to gain a large user group by providing the software
for free. They hope it enables them to increase their market share and create a larger user
group. In effect, that would provide leverage opportunities to e.g. provide complementary
products or services, or try to become a standard and push competing products out of the
market. For example, several companies provide free versions of their firewall and anti-virus
software. This software is fully functional but does not contain any advanced features.
Shareware (also called demoware) is comparable to freeware except that it can be used for

only a limited period of time or with limited functionality.

Commercial OSS

For-profit firms sometimes publish the source code of their software products to the public.
However, the software itself is not for free. West (2003) discusses the reactions of 3 major
players in the platform market (IBM, Sun and Apple) to the OS developments. Competition
have urged these companies to adopt hybrid strategies to “find the right compromise between
totally proprietary platforms and totally open ones” (West, 2003).

Examples of such hybrid strategies as discussed by West (2003), are opening parts of
the proprietary platforms (Apple) and making them partly open (Sun). Advantages gained by
such strategies are faster adoption rates, increases in the number of interoperable products,
and improvements by large sophisticated users that directly accrue to the proprietary platform.

Another expression that fits this category is ‘Shared Source’. Shared Source is the
answer of Microsoft towards OS. It allows certain large users (e.g. universities) to study the

source code of Microsoft products. Yet, it does not allow for modification.

16

© T. van der Luer 2005

Non-commercial OSS

This category holds all the software giving free access to the source code, including the right
to modify and distribute it. The major distinction in this category is between software under
viral licenses (GPL like), and non-viral licenses that often fall under the open source
definition (hereafter OSD). These two OS licensing schemes are explained in the following

section.

Open source licenses

Whether OSS should be released under Copyleft licenses or under non-Copyleft licenses has
always been a debate among advocates of OS (Agrain, 2002).

Copyleft licenses

Copyleft licenses present that “once a program is licensed by a developer the subsequent
programs based on the original must also be licensed similarly”’, Mustonen (2003) as cited in
Bonaccorsi & Rossi (2003a). As mentioned above, the most well known Copyleft license is
the GPL license. However, the term ‘viral’ needs some more explanation. Software does not
automatically get contaminated when it derives on GPL licensed software. It has to modify
the original work some way. Therefore it would be more descriptive to express the license as
persistent or to refer to it as inheritance (Bonaccorsi & Rossi, 2003a). Licenses that are also
Copyleft are the Lesser GPL (LGPL) license, the Mozilla Public License, and the IBM Public
License (Bonaccorsi & Rossi, 2003a). In the case of Copyleft licenses, ‘free’ is more prone to
refer to ‘free’ speech, since the licenses bring significant restrictions upon any commercial

exploitation.

Non-Copyleft licenses

Non-Copyleft licenses are somewhat united under the definition of the Open Source Initiative
(hereafter OSI), the OSD. The Open Source Initiative was founded in 1997 and has been
inspired by the ‘Debian Social Contract’. The aim of the OSI was to make OS projects more
attractive for commercial software firms and to overcome the main barrier for successful
exploitation: the ‘viral’ nature of the GPL-like licenses.

The OSD provides the rules to which OSS licenses should comply. The main points of

the definition are’: Royalty free redistribution, inclusion of source code, allowance for

5 The OSD can be found at http://www.opensource.org/ and is also available in appendix B.

17

© T. van der Luer 2005

modifications and derived works, and the allowance that all modifications may® be distributed
under the same terms as the license of the original software (Lerner & Tirole, 2001).

Today there are currently almost 40" licenses adhering to the OSD. Examples are the
Berkeley Software Distribution (BSD) and Apache software license. However, they only
represent a limited part of the available OSS. An even smaller portion is represented by Non-
Copyleft licenses that are not falling under the OSD license. Appendix C provides a schematic

overview of all software licenses discussed.

OSS in this paper

When using the term OSS in this paper, it refers to all software released under licenses that
are accepted by the Open Source Initiative as well as projects under Copyleft licenses®.
Although Copyleft licenses provide fewer opportunities for commercial firms they represent
about 70% of current OSS projects (Valimaki & Oksanen, 2002). Any open source study that
excludes this category would therefore severely limit itself in terms of research sample size
and generalization of any results. Having outlined what the concepts of ‘free software® and

OSS licenses embrace, several OS issues will now be discussed.

% They may be distributed under the same terms, but do not have to. i.e., there is no “viral’ aspect.

" A complete and up-to-date list of OSD approved licenses can be found on the website of the Open Source
Initiative: http://www.opensource.org/licenses/ .

¥ Terms which can create confusion are ‘open systems’ and ‘open standards’. Although somewhat related they
are no synonyms for open source.
Open standards make sure that different platforms, systems, and programs are compatible, i.e. that they can
communicate properly with each other although they might belong to different vendors. Open standards are
documents which outline agreed upon conventions. As long as different parties adhere to these conventions,
compatibility is guaranteed. Examples of open standards are image formats like GIF and PNG, or protocols
like TCP/IP (Ghosh & Glott, 2003). Open standards are neutral towards software development, welcoming all
and favoring none in its quest for interoperability. Whether these standards are used by OSS or proprietary
software is equally possible (Watson, 2003; Fugetta, 2003).
Open systems refer to system architectures were the ‘open’ aspect stands for the fact that the interface
specifications of the system’s components are fully defined and open to the public. Such openness makes
system interconnectivity possible because their interfaces are known and defined. However, essentially, this is
not related to open source per se.

18

© T. van der Luer 2005

OSS development issues

The fact that software is categorized as OS primarily relates to the license it is distributed
with. However, “OS licenses provide the governing mechanism that enforces the non-written
norms of the OS community, provides incentives for programmers, and distinguishes OS from
proprietary software” (Bonaccorsi & Rossi, 2003a). Thus, the OS licenses encourage free use
and keep the code open, thereby providing the necessary preconditions for OS development.
Most, if not all, OS projects are internet-based networks or communities of software
developers (Krogh & Hippel, 2003). And although OS development is to a certain extent
informal and decentralized, it is definitely not disorganized. There are some general
characteristics that belong to OSS development (Hertel, Niedner & Herrmann, 2003):

A culture in which authority comes from competence
Participative leadership, with clear responsibilities and delegation
Modular project structures

Parallel release policy

Motivating credit policy

Transparent community organization, with clear rules and norms
Standardized, internet-based communication and support tools

oy

One point is added to the original list: OSS usability. Each point will now be shortly clarified.

Authority by competence

A project commonly starts with an individual or small informal development group that
constructs a program to tackle a certain problem or to fulfill a certain need. Raymond (1999)°
suitably describes this as “scratching a developers itch”. This could be for personal, business
as well as intellectual reasons'”.

The fact that the person(s) in the leadership role provide the first programming
contributions and ideas, gives that leadership credibility. Yet over time the original
development group performs less and less programming and gets more involved into project
management. They provide the project with vision, split the overall project into smaller and
more well defined tasks which can be solved independently, attract other developers, and try
to keep the project together instead of falling apart (Lerner & Tirole, 2002).

Whether a project gets of the ground mainly depends on the interests of other

developers to join the project, and whether the first release provides a critical mass of code,

which shows the job can be done and that it offers value (Lerner & Tirole, 2002).

? In the often cited work ‘the Cathedral and the Bazaar’.
' A famous example is leadership role of Linus Thorvalds in the development of the Linux operating system.

19

© T. van der Luer 2005

Participative leadership

Although coordination is performed by the project leader(s), to a large extent the development
of the project comes from bottom-up. This is possible due to shared communication
principles, standards, coordination mechanisms, and tools, which allow all involved parties to
communicate effectively and efficiently.

The before mentioned article by Raymond (1999) refers to this decentralized
development style as ‘bazaar style’, this as opposed to more traditional, commercial, software
development, which he characterizes as ‘cathedral style’. Commercial software development
tends to be strictly hierarchical and by a smaller group of developers.

The extent to which people contribute to an OS project is very diverse. There are
different levels of participation. Or as Raymond (1999) notes: “Many bazaar projects have
inner and outer circles.. This simply reflects a natural gradient of interest and competence
and commitment”. Table 1 below provides an overview of the involved parties in a typical OS
project and their level of involvement. Peers decide at what level a certain individual
participates.

These multiple groups make up the actors in the bazaar. However, the extent to which
the bazaar model and its advantages'' hold for all OSS projects, especially the smaller ones, is
doubtful. In addition, while OS development might have unique characteristics, proprietary
software developers can copy it. Third, “it is not proved that open source uniquely and
necessarily causes software to be better, more reliable, or cheaper to develop” (Fuggetta,

2003).

Table 1 — Participation levels in a typical OS project

High Project owner. Individual or core group responsible for design decisions

concerning overall direction of the product. Contributes hundreds of hours per
<| |> year to the project.

People with write access to all or some subset of the source code. Typically
secondary leaders responsible for a particular subsystem or the project. Review
code submitted by others, route to project owner.

L?V.el Ot: Contribute bug fixes and small enhancements. May or may not participate on an
participation ongoing basis.

Use the product and debug it. Identify and report bugs. Participate in the mailing

lists.
{} Use the product and also suggest new features. Participate in the mailing lists.

Low Use the product.

From: 4 descriptive process model for open-source software development (p. 80), by Johnson, K., 2001. Calgary, Alberta,
Canada: University of Calgary, Department of Computer Science. Copyright 2001 by K. Johnson.

" Such as increased reliability, compatibility, and security.

20

© T. van der Luer 2005

Modular project structures

Software development is a complex undertaking, especially within the distributed OS
structure. This complexity has consequences for the quality of the software and the efficiency
of the production process if it is not managed properly. As mentioned before, one of the
success factors of an OS project is the extent to which tasks can be broken down into
independent parts. These parts have then to be presented within the software’s code
(Bonaccorsi & Rossi, 2003b).

The development of object oriented (OO) programming techniques provides a way to
manage such complexity. This technique is a process innovation that breaks down code into
objects which can be best regarded as reusable code modules. It also makes the code more
comprehensible (it only requires to understand a subset of the program) and easy to change
and expand. An example of a project making extensive use of such modularity is the Linux

operating system'? (Bonaccorsi & Rossi, 2003b).

Parallel release policy

Such modularity is exactly what is needed in the OS development process. Modules are
dependent but can be independently developed. This is ideal for the global and loose co-
ordination of OS projects. Ultimately they can be combined into a working program.

Such modularity enables a parallel, ‘release early, release often’ policy (Raymond,
1999). This means that new functionalities and bug fixes are almost constantly made available

to the public.

Motivation credit policy

Developer’s motivation to contribute code to an OS project has been a widespread point of
debate for economists (Frank & Hippel, 2003; Krogh & Hippel, 2003; Lerner & Tirole, 2002).
This is caused by the fact that OS communities mainly consist of people that contribute
without being paid directly for it. Some companies do support OS projects actively or
inactively, nevertheless voluntary contributions still make up the largest part of OS
contributions. Several arguments have been put forward why developers do this.

Factors that have been found relevant, among others, are: personal learning and

enjoyment (Krogh & Hippel, 2003), increased esteem within the community (Lerner & Tirole,

'2 Please note that modular design (i.e. object oriented code) is not a technique which is unique, or limited, to OS
software. However it enables the loose structure of the OS development process to a significant extent.

21

© T. van der Luer 2005

2002), and signaling of quality of human capital (Bonaccorsi & Rossi, 2003b). The most

important motivating factors are listed in appendix D.

Transparent community organization

The open recognition policy for contributions is part of the community’s organization made
public on the internet. Often, the entire project’s organization can be found online, grouped
towards different users. Developers, project managers, and end-users often have their own
entry points in the project. All documentation is often made available, including archives on
past decisions, software versions, discussions, bug databases, etc.

The fact that decisions, goals and procedures are openly stated and archived on the
internet makes these projects transparent to everyone. Such transparency helps contributors to
develop trust in the project and make sure that the project’s governance does not suffer under
ego gratification, commercial or political biases (Lerner & Tirole, 2001).

A problem with even slightly successful OS projects is often that they require
significant maintenance efforts in order to preserve quality and consistency. Therefore, setting
out procedures and guidelines for code contributions, bug reports, and documentation is
essential. Some portals, e.g. Sourceforge, provide means for OS projects to streamline their
actions in order to maximize the efficiency and effectiveness of the OS development

pI'OCCSSl3.

Tools for communication and support

As OS projects are composed of many different parties, these parties are often also fairly
geographically spread and isolated. Their primary means of communication is presented by
the internet, which offers the opportunity for asynchronous communication: one party does
not have to be available when the other party communicates.

Besides the fact that the internet infrastructure itself is partly based on OS creations,
various tools are used within OS projects. They provide for the cost-effective coordination
and communication within the OS community. Some of the most important tools are
(Johnson, 2001):

o Mailing lists, newsgroups, and forums, which provide for communication.
o Programming support tools like code version management tools (CVS), source

code compilers and debuggers, and other code utility programs (e.g. Unix diff).

'3 SourceForge.net provides automated mailing lists, server space, problem report databases, etc. to open source
projects. It requires no financial compensation. Their mission is to “enrich the OS community by providing a
centralized place for OS developers to control and manage OSS development” (www.sourceforge.net).

22

© T. van der Luer 2005

o Secure protocols (SSH).
Although these tools are not the subject of this paper and might seem to be of merely
technical importance, in fact they almost form a prerequisite for the OS process to take place.
To a large extent these tools reflect the governance and decision making process in OS

projects'®. Another aspect to OS development is the lack of emphasis on usability issues.

OSS Usability

Usability is related to the complexity and relative advantage, which a software product poses
to the end user (Fichman, 2000). Usability is often described in five terms: ease of learning,
efficiency of use, memorability, error frequency and severity, and subjective satisfaction
(Nichols & Twidale, 2003). Open source products generally do not have a good reputation in
providing usability to the average end user (i.e. the non-hacker'”) as compared to proprietary
software. Nichols & Twidale (2003) mention several reasons why this is the case, among
which are:

o OSS developers are not typical end-users.

o Usability problems are harder to specify and distribute than functionality problems.

o OSS development generally shows a lack of formal requirements finding, analysis,

and specification: This puts code design in front of interface design.

o OS projects lack the resources to undertake high quality usability work.

0 Strong incentive to add functionality, but community aspects prohibit the deletion of

duplicate or irrelevant functionality.

o OSS development promotes power over simplicity: more and many advanced features

instead of keeping the interface simple.

This list does not mean that OSS development has not paid any attention to usability
issues. However, usability does seem to be an issue for many OSS projects, especially when
compared to proprietary software. Nichols & Twidale (2003) note that OSS development
might go to a similar ‘usability phase’ as did the development of proprietary software in the
nineteen-eighties. The various development issues described have their influence on the

supply and demand of OSS, which is the topic of the following part.

' Most of these tools have been developed by the OS communities itself and fall under OS licenses (often GPL).
'3 “hacker’ is a synonym for a technical competent person which actively displays his/her programming
techniques, possibly to the OS community by contributing to one or more projects.

23

© T. van der Luer 2005

OSS demand & supply

The supply of OSS seems a strange economic event. Although the market price is zero,
developers are still willing to contribute. This, as shown by the following discussion, can
partly be explained by an extension of the traditional utility concept, towards the inclusion of
reputation, recognition, and future enumeration (Blecherman, 1999). On the other hand there
is demand for OSS. Since OSS is freely available, who would not want it? Obviously, there is
more to software than just its price, namely the value it adds to the firms existing application

portfolio. This section discusses these various issues related to OSS demand and supply.
Demand for OSS

Software value chain

The software value chain is shown in figure 3. The software value chain consist of two
substantially different parts: the actual software product (the application), and the services
provided next to it. Services come in the form of consulting, training, installation support, etc.
Furthermore, these can be standardized (e.g. an office package) or customized (e.g. an
inventory system for a warehouse) (Berlacon, 2002c). The product / service combination

determines the value a certain application has to the purchasing unit.

Software Value Chain

Product (Programming) Services

Figure 3. The software value chain.

The software value chain provides the competing ground for commercial and OSS.
Which products will eventually rule the market? What type of applications are better provided
by the OS community, and which by the ‘traditional’ software firms providing proprietary
software? In other words, which side provides most value?

But what is the concept of value exactly? “It is the difference between what you would
pay and what it costs to make” (Blecherman, 1999). The value added to the customer is the

value the customer associates with the application and the actual production costs. This is the

24

© T. van der Luer 2005

so-called consumer ‘surplus’. The product providing the largest surplus simply wins
(Blecherman, 1999).

How much value a specific application adds to a customer depends on the product
attributes of that software. Kwan & West (2003) classify these attributes into features, risks,
and costs. Ceteris paribus, firms would prefer to have the most features at the lowest risk and
cost (Kwan & West, 2003). The importance of specific product attributes is largely
determined by a firm’s context. Helpful insights into the context and value of a certain
application within a firm can be given by means of the concept of the applications portfolio,

which is discussed next.

The applications portfolio

Management’s awareness of the current information systems within the firm and their (future)
contribution to the business is very important. The applications portfolio is a matrix that
enables the classification of the current contributions of the available information systems to
the business in a simplified way'® (Ward & Peppard, 2002). Moreover, it provides a way to
compare the importance of applications between firms and the way in which that importance

varies over time (Kwan & West,

High STRATEGIC HIGH POTENTIAL

2003) Eu‘ainass opportunity IT uppugJ._lnlh.r
Men rven
Ward & Peppard (2002) 4 Cormpetiive neovation &
. . exploitation Experimation
compose the matrix according to Fotential focus focus
contribution
; i : of ISAT
the potential contribution of the to achieving
T fut
IS/IT application and the degree of business
goals -C..ur.-.-__r'l L'-uT-' ness Utility & efficiency
business dependence on that P e focus
application. This gives the matrix Business issue ITissue
driven driven
four quadrants ranging from Low [KEY OPERATIONAL SUPPORT
strategic'’ to high potential, and High P Low

Degree of dependence of the business on the

from key operational to support application to achieve overall business performancs

The matrix is shown in figure 4. Figure 4. The applications portfolio.
The applications portfolio provides a clear overview of a company’s current and near

future capabilities and needs in terms of applications. The matrix highlights where new

'® One simplified aspect is the time span. The matrix is a snapshot in time. Over time the importance and
position of a certain application can, and will, change. E.g. the permanence of a competitive advantage gained
by strategic application, i.e. duplication, is often not very long (Ward & Peppard, 2002). Common cycles of
changing application strategic importance are shown in appendix E.

7" An example of a strategic application would be the SABRE online reservations system developed by

American Airlines and IBM (Kwan & West, 2003).

25

© T. van der Luer 2005

applications are required and where not, and where the available products on the market can
be placed according to their attributes: risk, features, and cost. Thus, the matrix highlights the
areas in which there is a possible demand for applications, and how the applications available
match this demand. Part of this supply of software is made up of OSS, or software that
includes OS components.

It has been argued in the previous section on OS development that OSS offers some
significant advantages over proprietary products in terms of, for example, functionality and
reliability. Then again, OSS is not available for all software categories and quadrants. OSS
that requires specialized knowledge and can be mapped to, especially, the strategic quadrant
of the above portfolio tends to be limited. In which categories OSS is strong, and why this is

s0, is the topic of the next section.
Supply of OSS

Software categorization

Software can be categorized in many ways, e.g. application software versus systems software
or desktop software versus server software. A possible categorization scheme is shown below
in figure 5, which splits software in operating systems related software, enterprise solutions
and standard applications. OSS tends to be underrepresented in some of these categories while
being overrepresented in others (Berlacon, 2002c; Fugetta, 2003; Vilkdmi & Oksanen, 2002;
West & Dedrick, 2003).

n &=
the Operating systems Enterprise Standard
and OS extension Muﬁl applications
con
: - Entertainment

Operating Productivi i i

text systems t;;fg"mf
f
© i SESIERLE Networking / SME Business
. velopemen internet CHIE

thlS Inﬂls a icr:tiuns applications
cla Figure 5. Software product categories.
ssif

ication, OSS is overrepresented in operating systems and operating system development tools.

Also, OSS has always been strong in internet service applications like web servers and e-mail

26

© T. van der Luer 2005

management'". Another strong point of OSS is database management. In the other categories
OSS is available, but in rather limited numbers.

Thus a logical question to arise is why the available OSS is biased towards certain
software categories. This bias can be explained by referring back to the development of open

source and is the subject of the next section.

Determinants of OSS supply

The discussion on the OS development process showed that advantageous characteristics
associated with OSS (such as reliability, compatibility, security) to a large extent depend on
the availability of a critical mass of developers. If a project cannot interest and attract other
developers, the increased utility in the sense of recognition, reputation, and ego gratification
do not hold and the project is likely to soon die.

Blecherman (1999) argues then, that applications with broad use and large scope apply
more to the OS methodology. This is so because they require more functionality, which is an
OS strength. Moreover, a broad application has a larger user group, and the chance that this
group contains potential contributors is larger.

Secondly, the more the application’s end-user community is composed of developers,
the more likely the project will succeed. Developers will be more prone to contribute since
they are the end-users and probably the application will require mainly the kind of knowledge
they already possess (Blecherman, 1999).

Thus, OS applications must be in an area that can get the interest of a sufficient

number of developers which are willing to contribute in order to create a sound basis for the

project to continue in such terms as functionality,

@ o High Open-source 'wins'
reliability, security, compatibility, etc., and utility 95 A

n o
provision. When combined this leads to the conclusion g%

. . . . e

that applications which require in-depth knowledge in b= E

2a
a certain area which is not related to general developer &g Closed-source 'wins'
interests, are less likely candidates for OS efforts <7 Low — High
(Blecherman, 1999). This in turn explains why the whhéuﬁﬁ:g;r:ﬁ:ﬁers

OSS supply is limited to certain categories and is Figure 6. Determinants of available OS

likely to be less applicable for certain application applications.

portfolio quadrants. This argument is represented in figure 6.

'8 A sample of OSS products is provided in appendix F.

27

© T. van der Luer 2005

Total cost of ownership

The cost advantage of OSS is widely debated. Although license fees do not apply to OSS,
which is a fact most agree on, other cost components are debatable. Besides license fees,
software costs also include indirect and qualitative costs, which are more difficult to measure.
An often-used concept to guide the discussion on costs is total cost of ownership (TCO). This
concept will be briefly explained in this section.

Costs can be qualitative as well as quantitative. TCO deals with the quantitative costs.
In effect, these can be direct and indirect. Thus, TCO can be seen as a measurement for all
measurable costs of an investment'”. TCO cannot provide definite answers to whether OSS or
proprietary software is cheaper. TCO is very context dependent and therefore primarily useful
for internal analyses (Knubben, 2004).

Therefore, TCO examinations often come up with different results, e.g. in the
comparison of the TCO of Linux and Windows systems (Knubben, 2004). Although the
results vary, there are some cost categories in which OSS significantly differs from
proprietary software (Knubben, 2004; West & Dedrick, 2003):

o Hardware: OSS is often not dependent on a certain hardware platform. This
limits vendor dependence and any excess costs related to that dependence.

o Software: OSS does not require any financial compensation, e.g. no license
payments. License fees count for 10 to 30 percent of the total ICT budget
(Ghosh & Glott, 2003). In addition, no licensing administration is required.

o Lifecycle: Software has a limited lifecycle. For commercial packages, support
for older versions is dropped at a certain point in time. However, OSS stays
often available via the communities. This postpones the update costs.

o Operation: OSS allows for easier process automation.

o Technical personnel: Personnel seems less available for Linux based systems
and applications due to the different required technical capabilities. This is
reason to believe that personnel costs will, at least initially, be higher.

Another issue in investment decisions on OSS versus proprietary software are
switching costs. Partly because proprietary software relies to a large extent on closed
standards and OSS relies on open standards, switching to OSS often brings large and one-time
costs. This is especially true when organizations have to migrate from a Windows architecture

to a Linux environment if they would like to adopt certain OSS.

Y TCO is therefore not limited to investments in IS/IT, but can be used for all investment decisions.

28

© T. van der Luer 2005

Importance of third party support

One of the prime motivators that drives OS developers is the fact that the core technical
development of a project provides challenges which present intrinsic satisfaction (Bonaccorsi
& Rossi, 2003b). However, not all work in OS projects provides such challenges. As
discussed, usability aspects provide a weak point in OSS products, and provide an area of
opportunity for for-profit firms. Examples are the development of a graphical interface,
providing help and documentation to end-users, and support issues.

When considering the value chain of software products, it can be said that the OS
development community primarily deals with the product development, and often only partly
takes care of any service aspects. This has led to various hybrid business models where
commercial firms provide for these more mundane tasks (Bonaccorsi, Giannangeli & Rossi,
2004). Additionally, especially larger firms, often require ‘hard’ and legal support contracts
for commercial implementations of OSS (West & Dedrick, 2003).

These hybrid business models solve two issues. Commercial support complements
OSS on aspects the OS community cannot or does not want to provide. This increases the
adoption potential of OSS. Secondly, commercial backup for OS projects provides adopting
firms with a certain continuity guarantee, which is essential for users that have to incur some

level of switching cost (Bonaccorsi & Rossi, 2003b).

29

© T. van der Luer 2005

Conclusion

This chapter discussed the most important aspects of the OSS phenomenon. The OS
development process has been considered and it has been shown that OSS can offer various
advantages over proprietary software. However, the added value of the OS methodology
seems to depend on the number of developers willing to work on a certain project, and the
relative importance of each of the three product attributes. This is summarized in table 2. In
addition, current OSS supply is not optimal in all software categories. Yet, this chapter did
provide answers to the first research question: What is open source software?

It is important to stress for the discussion to follow that OSS is software that possesses
some unique characteristics in comparison to proprietary software. These characteristics are
partly caused by the development process, but this process itself is not of further interest to
this thesis. This thesis only will consider how the perceived characteristics are likely to
influence the adoption of the OSS product by end-users.

The next chapter will shed light on technology adoption from the perspective of

innovation diffusion literature. It will also argue to which extent OS is an IT innovation.

Table 2 - Added value: Comparison of open and closed source

Value aspect Open source Closed source

Functionality, adaptability, security,

Features compatibility, usability (hackers) etc.

Usability (end-users)

More reliable software
No legal guarantees
Source code provides sense of More stable in terms of legal
continuity contracts and vendor stability
License type determines risk for
proprietary code (Copyleft aspect)

Risk

No software licenses
Costs Lower hardware costs Lower service costs
(often) Switching costs

Overall critical factors Size of the OS community (critical mass)

Adapted from: The cathedral versus the bazaar (With apologies to Eric S. Raymond): An economic and strategic look at
open-source software (p. 5), by Blecherman, B., 1999. Copyright 1999 by B. Blecherman.

30

© T. van der Luer 2005

Chapter 2 - Adoption and diffusion of innovations

Many have defined the concept of innovation, but certain aspects are more or less always
included. An innovation is something that is new in its context. One of the works that has
provided a solid and lasting foundation in innovation diffusion literature was that of Rogers
(1995, original 1983). His work has become a standard, and is referred to in this paper as the
‘classical’ diffusion of innovation theory (hereafter DOI theory).

This chapter will review and discuss literature on the innovation process, and will
point out the most important conceptszo. Also, it will make clear the extent to which classical
innovation theories provide an explanation for modern information technology (hereafter IT)
innovations and the OSS developments. In the end, a conclusion will be given. First, a short

introduction into the concept of innovation.

The innovation process

The innovation process takes place from the moment that a novelty is found to be helpful until
it reaches full potential. Innovative capacity is getting more and more important and even say
that the extent to which a company can create and react to innovations will be the only
sustainable competitive advantage left (Hamel & Prahalad, 1990). This is partly caused by the
number of technological innovations, more specifically, IT innovations, which have been
flooding the work floor over the last decade. Typically, an innovation process takes on certain

steps. These steps will now be shortly reviewed.

Innovation adoption, diffusion and infusion

Rogers (p. 11, 1995) refers to an innovation as: “an idea, practice, or object that is perceived
as new by an individual or other unit of adoption... If the idea seems new to the individual it
is an innovation”. When an innovation is being adopted the decision to spend resources has
been taken. When the innovation spreads over time, due to communication among social
communities, other units can also start to adopt the innovation, which is denoted as diffusion.
However, although an innovation might be adopted and diffused, it might not be extensively
used in practice. For example, it might be a fad or unpractical (Newell, Swan & Galliers,
2000). When an innovation does get extensively used and integrated, an innovation is said to
have reached a high level of infusion. The process from initial awareness to infusion is

referred to as assimilation (Fichman, 2000). Next, an outline of innovation diffusion research.

 To guide the discussion two literature review studies by Fichman (1992, 2000) are used.

31

© T. van der Luer 2005

Innovation diffusion research

Researchers from various fields have worked and published on the concept of innovation
diffusion. In general, DOI research focuses around three basic research questions (Fichman,
2000):

1. What determines the rate, pattern, and extent of diffusion of an innovation across a
population of potential adopters ?

2. What determines the general propensity of an organization to adopt and assimilate
innovations over time ?

3. What determines the propensity of an organization to adopt and assimilate a particular
innovation ?

In addition, there are in general two styles of research, namely adopter studies and diffusion
modeling studies. Adopter studies try to answer research questions two and three within a
certain context. They primarily deal with specific organizations implementing (or not)
specific innovations. Diffusion modeling studies are mainly constricted to the first research
question, and try to find more results that can be generalized (Fichman, 2000).

Although Rogers’ (1995) work has provided grounding concepts for innovation
diffusion research there is no all-encompassing ‘theory of innovation’. This can be explained
by the fact that DOI research is highly contextual, and it is very hard to provide a general
theory. It is therefore that most DOI research is dealing with specific technologies and
adoption contexts (Fichman, 2000).

However, “the current state of innovation diffusion research provides well-developed
concepts and a large pool of empirical results that are applicable to the evaluation, adoption,
and implementation of technologies” (Fichman, 1992). Therefore, a solid discussion of the
main concepts is highly relevant to this thesis. The following section will describe the more or

less ‘classical’ concepts on the concept of innovation diffusion.

Classical innovation diffusion works

The classical innovation diffusion works embrace the basic concepts and theories laid down
in, among others, the works of Rogers (1995) and Tornatzky & Klein (1982). These works

will now be discussed.

Diffusion of Innovations (DOI)

The famous work of Rogers, ‘Diffusion of Innovation’ (1995), is an often-cited source in

innovation diffusion literature. Rogers’ work integrates over three thousand previous studies

32

© T. van der Luer 2005

in the field of technology adoption and diffusion. From the study several generalizations are
widely accepted:

o Definition of diffusion: The process by which an innovation is communicated
through certain channels over time among the members of a social system. This
includes four important aspects: time, communication, the social system, and
innovation.

o Innovation-decision process: The fact that adoption is a process with a knowledge
stage, persuasion stage, decision stage, implementation stage, and confirmation stage.

o Adopter categories: Adopters can be more or less categorized according to the speed
at which they adopt an innovation. The speed by which people innovate depends on
various factors, for example personal characteristics.

o Typical diffusion pattern: S-shaped adoption curve. The various adopter categories
adopt at differing speeds. In the beginning, adoption is slow and only by innovators.
At a certain point in time critical mass is reached and growth rates are high, in the end
the curve is flattened again.

0 Influence of change agents and opinion leaders: The importance of individuals
(knowledgeable and influential) in the diffusion process, convincing others to adopt
and thereby accelerating adoption, are significant.

o Innovations characteristics: Certain perceived innovation properties determine the
rate of adoption: compatibility, triability, relative advantage, observability, and
complexity.

These generalizations provide a quick insight into the work of Rogers (1995). Tornatzky and

Klein (1982) elaborated on the various innovation characteristics. These are discussed next.

Innovation characteristics

Tornatzky & Klein (1982) presented a ‘meta-analysis of findings’ of prior studies that dealt
with innovation characteristics. In total they found thirty characteristics to be relevant in these
prior studies. Of a total of ten which were selected, three were found to have a positive
relationship with innovation adoption: compatibility, relative advantage, and complexity.
These were also included in the five innovation characteristics mentioned by Rogers &
Shoemaker (1971) as cited in Tornatzky & Klein (1982).

Although the classical DOI work has been critical for innovation diffusion research, it

has some shortcomings, especially for the adoption of more complex innovations. For

33

© T. van der Luer 2005

example, the framework focuses on the diffusion of mass-produced items (Chau & Tam,

1997). The following section will provide several extensions to the classical DOI theory.

Extending the classical DOI theory

One of the drawbacks is that the DOI theory focuses too much on autonomous adoption
decisions by individuals (West & Dedrick, 2003). Innovation adoption decisions are often not
made by individuals since they are too big and complex to be understood by an individual
user. These types of decisions require specialized knowledge before the moment of adoption
(Fichman, 1992) and are influenced by the environment (Robertson & Gatignon, 1986). These
shortcomings have resulted in various extensions that try to extend the classical diffusion
theory towards more complex adoption situations, namely:

Managerial influences
Organizational adoption
Network externalities
Knowledge barriers

0 Environmental factors

[Sy S]

Each of these extensions will now be discussed.

Managerial influences

Individuals are often not in a situation in which they can freely choose what to do with an
innovation. Guidelines and procedures are commonly in place that determine the range of
choices that an employee can choose from. Within this range, certain reward and incentive
systems might favor one solution for another, possible ruling out the adoption of the
innovation, based on less important or short-term criteria. Overall, in practice, the classical
assumption of autonomous individual adoption decision might not be valid, since in most

cases managerial influences of some kind are involved (Fichman, 1992).

Organizational adoption

Rogers (1995) notes that “certain organizational characteristics do not have an individual
counterpart’. With this sentence Rogers refers to the fact that the innovation adoption and
diffusion process at the individual level has different characteristics then at the organizational
level. First, Rogers stresses the importance of individual (leader) characteristics. These can
provide the edge to overcome the resistance to change and makes an organization to
implement an innovation. Second, Rogers outlines the innovation process that continually

takes place in organizations: initiation and implementation. Third, it is noted that

34

© T. van der Luer 2005

organizational size is often mentioned as a measure of organizational innovativeness.
However, thereafter it is immediately argued that this is caused by the fact that organizational
size is easy to measure, and is an aggregate of several dimensions that influence
organizational innovation. These dimensions do not all have to be in place for finding a
positive relation between size and innovativeness, and most research has not differentiated
between the different aspects. Or, as Tornatzky & Fleischer (p. 162, 1990) state it, “size has
sometimes been mistakenly seen as an indicator of purely organizational treats”.

As discussed before, the classical assumption that individuals adopt innovations for
their own independent use, often does not hold (Fichman, 1992). Individuals frequently make
their decisions within organizational boundaries. Within the organization, choices are limited
by organizational routines. The individual adoption must fit in to the organizational process
in order to be practical, efficient, and effective. Organizations and individuals in effect, base
their decision frequently on the actions of other, interdependent, adopters. When the value of
an innovation of one adopter depends on the number of other adopters, the innovation is said
to exhibit network externalities (Shapiro & Varian, 1999). These are the topic of the next

section.

Network externalities

Rogers (1995) provides a helpful summary of diffusion networks and discusses some
fundamental concepts of network externalities, namely: opinion leaders, communication
networks, personal threshold, and critical mass.

Opinion leaders are important in diffusion networks since they influence adopter’s
attitudes towards an innovation. Furthermore, mass media channels can directly or indirectly
strengthen the influence of opinion leaders (Rogers, 1995).

The network that an individual adopter is part of and gets information from, and the
number of links to adopters, is an important determinant for the innovation adoption decision.
The level of interconnectedness of an individual to the network is positively related to
adoption levels and adoption speed (Rogers, 1995).

The personal threshold refers to the number of other persons within an individual’s
interpersonal communication network that have to adopt an innovation before the individual
will adopt it. Slow adopters are referred to as laggards, fast adopters as innovators. The
individual threshold value depends on personal characteristics, which explains adoption

speed. At the macro or system level, this is referred to as critical mass (Rogers, 1995).

35

© T. van der Luer 2005

The rate of adoption of aggregated individual adopters comes to a tipping point at a
certain moment in time. This point is denoted as the point where critical mass is achieved.
After that point the innovation’s further rate of adoption becomes self sustaining (Rogers,
1995). This process is defined by Shapiro & Varian (1999) as positive feedback and can be
explained by the fact that the overall size of the network after achieving critical mass makes
the opportunity cost of not adopting the particular innovation too costly. “Positive feedback
makes the strong get stronger and the weak get weaker, leading to extreme outcomes:
dominance of the market by a single firm or technology” (Shapiro & Varian, 1999).

Whether or not a market is receptive to network externalities and tipping depends on

the economies of scale and the demand for variety (Shapiro & Varian, 1999). High economies
of scale will make the market more ‘tippy’ whereas more differentiated user needs will not.
The supply side economies of scale can create barriers to entry for new entrants. Demand side
economies of scale include network externalities, which create switching costs and lock-in for
adopters (Shapiro & Varian, 1999). The presence of such network externalities might even
lead to situations in which an innovation becomes a standard with a relatively small
advantage, possibly not even related to intrinsic product quality but to for example the
marketing efforts*’ (Bonaccorsi, 2003b).
For new entrants, a market that exhibits network externalities it is almost impossible to
penetrate. The value of a network depends on the number of users, or installed base, and in
the case of a new party this value will be close to zero. To ignite positive feedback and start to
create network externalities, the strategy can depend on 4 factors: the level of technology
compatibility, performance, openness and control (Shapiro & Varian, 1999).

On the other hand, although an installed base of locked-in users might provide a
serious hurdle for a new entrant, the reasoning behind lock-in ignores a set of variables that
can have powerful impacts on the pattern of technology adoption (Bonaccorsi & Rossi,
2003b). First of all, changing the assumptions of the mathematical demonstration for lock-in
can explain how new technology can spread in a market despite an installed base. Secondly,
the ‘virgin market condition’, of 2 parties arriving at the same time on a market does not often
hold. Thirdly, the potential market for a technology is not infinite and users will not inevitably
stick to a technology due to some sunk costs made in the past. Fourth, the assumption of the
independence of individual choices is not very realistic in today’s network economy

(Bonaccorsi & Rossi, 2003b).

! An often mentioned example is the adoption of the current standard for keyboards, QWERTY. More efficient
alternatives like the keyboard by Dvorak, never made it (www.dvorak-keyboard.com).

36

© T. van der Luer 2005

In a research article on network externalities with spreadsheet software Brynjolfsson &
Kemerer (1997) conclude that the installed base might be just as important as intrinsic product
quality in affecting the market value of such products. This provides a direct trade-off
between the release time of a product and increasing the quality in terms of product features.

All in all, new technology with a small installed base might be very attractive to a
potential adopter because of certain features or characteristics. However, the technology
might be so overly complicated that it provides a knowledge barrier to implementation to the

potential adopter. Such knowledge barriers are clarified in the subsequent part.

Knowledge barriers

Rogers (1995) mentions the issue of an innovation’s complexity and generalizes: “The
complexity of an innovation, as perceived by members of a social system, is negatively related
to its rate of adoption”. But even if the adopting unit would be willing to adopt the
innovation, regardless of its level of complexity, in many cases the adopter is not able to
adopt the innovation due to a lack of knowledge (Fichman, 1992).

The fact that a potential adopter initially cannot make use of an innovation is due to
the fact that the producer of the innovation and the adopter do not share a knowledge space
large enough that the adopter immediately understands how to operate the innovation rapidly
and to its fullest extent (Alavi & Leidner, 2001). It is argued that knowledge consist of tacit
knowledge (mental models and know-how) and explicit knowledge (skills). In order for two
parties to understand each other, the receiver should have enough tacit knowledge overlap
with the sender of the information to develop the necessary skills, i.e. explicit knowledge.
This difference in knowledge bases can be overcome by providing contextual information to
the receiver (Alavi & Leidner, 2001). However, there is a limit to this. The receiver has a
certain absorptive capacity (Fichman, 1992). This means that beyond a certain point it will
not be feasible any more for the adopter to adopt the innovation because the learning curve is
simply to high. This provides an opportunity cost, which might favor another alternative over
the innovation at hand.

Because of the limited absorptive capacity of potential adopters in the case of complex
technologies, Newell, Swan & Galliers (2000) pose that suppliers of such technologies® often
offer so-called ‘black-box’ solutions to overcome initial adoption reluctance. ”The knowledge
of the innovation has been commodified, so that a set of such complex ideas can be presented

as a ‘thing’ - a fixed entity — that can be slotted into any organizational context” (Newell,

2 Examples of such complex technologies: MRP, ERP, BPR, JIT, TQM, CRM.

37

© T. van der Luer 2005

Swan & Galliers, 2000). These ideas are then spread among social communities as ‘best
practice solutions’ via various channels, for example suppliers and, especially, professional
associations (because of their perceived neutrality). After initial adoption this packaged
knowledge has to be unpacked and integrated into the organization, which is often found
difficult and leads to high failure rates (Newell, Swan & Galliers, 2000).

This section emphasizes again the importance of contextual factors. Complex
technologies, often proposed as an all-solving remedy are not fitted for every organization in

its unique context. Next to discuss are environmental factors.

Environmental factors

According to Tornatzky & Fleischer (1990) two aspects of the external environment are key
determinants of innovative activity: "the competitive characteristics of the industry, and the
existence of a relevant technology support infrastructure”.

The industry to which a firm belongs and the market it operates in, influence the
adoption decision. Although there have been various studies on the influence of market
competitiveness and concentration on the adoption (speed) of innovations, results have been
diverse. First, firms in oligopolistic shaped markets will tend to offer innovations at higher
prices and thereby slow the overall adoption rate. Second, vertical integration and
coordination seem to positively influence innovation behavior due to an increased information
flow (Robertson & Gatignon, 1986). Third, firms have found to innovate more at stable
periods and higher market uncertainty (Tornatzky & Fleischer, 1990). Another hypothesized
relationship is between business goals and the types of innovations adopted: “Differences in
competitive importance (price, quality, service) may affect the types of innovations a firm
seeks out” (Tornatzky & Fleischer, 1990). For applications, the competitive importance of
different factors shows in the type of applications a firm has in the applications portfolio, as
discussed in chapter one.

Robertson & Gatignon (1986) emphasize the shortcomings of the classical innovation
diffusion research. They propose a model in which competitive factors in the supplier-, as
well as the adopter-environment, are explicitly linked. They add to this discussion in
providing some additional environmental supply side factors namely reputation of industry,
R&D allocation, and marketing support.

Another important aspect is the availability of external resources and government
regulations. The availability of skilled labor at a reasonable wage rate and with a sufficient

educational background, and technology supply and support are essential to the adoption

38

© T. van der Luer 2005

decision (Tornatzky & Fleischer, 1990). On the other hand, certain innovations are simply not
allowed, or are discouraged, to adopt, by means of government regulations.

Evidently, the adopting unit is not a static victim of its environment. The external
environment represents the boundaries in which the innovation process takes place. The firm
can influence these boundaries. How a firm operates in its environment is outlined in the
firm’s business strategy. This strategy has a large influence on the innovation adoption policy
of the firm and whether or not a particular innovation fits in. Company management
determines the strategy under the influence of various parties and factors, ranging from media
to unions, suppliers, and shareholders (Ward & Peppard, 2002).

After having discussed classical innovation diffusion theory, and the major extensions

to that theory, the next section will continue with innovation diffusion within the IT domain.

IT innovations

IT has had a growing share in overall business investments over the last decades. It is not
surprising then, that the diffusion of information technology has gotten considerable attention
by research and has provided a large part of the total amount of research in innovation
diffusion research (Fichman, 2000).

As has been mentioned before, there is no general innovation diffusion theory and
most research and theories are adapted to a specific context. In the context of IT innovations,
the category to which software, and consequently OSS, belong, there are also certain factors
which turn out differently, or prove to be of relevance, compared to any other context.

Fichman (2000) discusses four aspects because of which IT innovations might diffuse
differently: two-part adoption decisions, knowledge barriers and organizational learning,
network externalities, and incomplete products due to infrastructure dependence. These four

aspects will now shortly be considered.

Diffusion of IT innovations

Whether or not to adopt an IT innovation is often a (top) management’s decision. However,
whether or not actually, and the extent to which locally, use the innovation, is a second
decision which does not have to have the same outcome. This could be due to the level of
centralization of the IT organization. More centralized control would probably result in the
adoption decision being set from above (Ward & Peppard, 2002).

High individual resistance might also prohibit extensive infusion (Fichman, 2000).

The five characteristics of an innovation as stated by Rogers (1995) might somewhat explain

39

© T. van der Luer 2005

why some individuals are more resistant to adopt an IT innovation than others, but it is a
rather limited justification™ (Pijpers, Montfort & Heemstra, 2002).

Knowledge barriers and network externalities as discussed in the previous section are
highly relevant in the study of IT diffusion. Often, IT poses such knowledge barriers, for
example learning a new software package or programming language. On the other hand, the
importance of standards and network size in the case of specific technologies is considerable,
as can be seen in the market dominance of Microsoft for various software categories.

IT innovations often consist of incomplete or specialized solutions, or depend on the
provision of a certain infrastructure, for example an internet connection or a certain operating
system. This means that they are not very attractive to the mass market and often have to be
reconsidered. Such incomplete products obviously offer higher uncertainty and risk to the
potential adopter (Fichman, 2000). Whether products with higher risk could fit into the
adopter’s strategy depends on the

HIGH | Opportunistic Complex
adopter context. Internally, the Applications Applications
application portfolio can explain this, a st | HP st | WP
concept that has been clarified in z KO | Su KO | Su

c Portfolio Portfolio
chapter one. o g

o : 22
The applications portfolio £3
) a3 Applications Applicati
relates the degree of business a P :pm ons
~ t
dependence on IS/IT to the degree of o o | sq
contribution of the IS/IT application. Portfolio Portfolio
The extent to which a business is LOW | Traditional Backbone
LOW Infusion (impact) HIGH

dependent on IS/IT is also referred to as
the level of infusion of the application. Figure 7. Application portfolios in different contexts
The potential contribution of IS/IT to future business goals, and the extent to which it is
scattered throughout the organization is mentioned as the level of diffusion®* (Ward &
Peppard, 2002).

To which quadrant a certain application belongs in a specific organization’s context
determines how it should be managed and how the portfolio should be planned. Research has
mixed arguments for the kind of planning and management to use, however there is

agreement on the less complex quadrants: support and key operational applications (Ward &

Peppard, 2002). Logically, the extent to which IS/IT is diffused and infused in an

2 This is related to the previously mentioned technology acceptance model by Davis (1989).
24 Diffusion here is referred to more as the spread within the organization, as opposed to among organizations.

40

© T. van der Luer 2005

organization, i.e. the IS/IT environment, will impact the strategy for managing and planning
the applications portfolio.

Externally, the adoption and diffusion of IT, i.e. a specific application, is determined
by the environmental factors as discussed in the previous section. Examples would be
organizational slack and the business environment. As compared to strategy, IT can be an
enabling factor and a defining factor. A small firm heavily relying on e-commerce obviously
depends on technology for its strategy. A large firm using IT to make a global structure work
is using it as an enabler (Ward & Peppard, 2002). How IT innovations diffuse in various

organizations has gotten considerable research attention, resulting in several frameworks.

Frameworks for organizational diffusion of IT

Rogers (1995) summarizes previous studies on organizational diffusion. However some more
comprehensive organizational diffusion frameworks of IT have been developed (Fichman,
1992).

Zmud (1982) argues that the differing results in research studies towards the influence
of organizational structure (represented by the level of centralization and formalization) on
organizational innovation can be explained by three issues. First, the phase in which the
innovation is within the organization. Second, the compatibility of the innovation with the
interests of the organizational members. Third, the organizational unit dealing with the
innovation, characterized by being technical or administrative. The study found positive
results for this reasoning, which confirms that innovation-diffusion research is highly
contextual, in this case with regard to structural aspects of organizations.

Kwon & Zmud (1987) devote their attention towards the implementation of IT in
organizations. They define five contextual factors which each may impact each of six stages
of IT implementation in a process model of stages, namely: initiation, adoption, adaptation,
acceptance, routinization, and infusion. The five contextual factors relate to the characteristics
of the user community, the technology, the organization, the task to which the innovation is
being applied, and the environment. Furthermore, interaction among these five factors was
found to be important, for example the fit between the technology, task, and organization;
referred to as compatibility (Cooper & Zmud, 1990).

In a study by Cooper & Zmud (1990), the adoption and infusion stages are examined
in terms of (IT) innovation implementation success and the related task and technology
characteristics. They argue that technological complexity is negatively, and task-technology

compatibility positively, related to implementation success. Furthermore, they hypothesize

41

© T. van der Luer 2005

that these rational arguments are more likely to hold in the adoption stage than in the infusion
stage due to the resistance to change and political motives. The research (based on MRP
implementations™) supported their reasoning. Rational models of implementation behavior
are most relevant for early adoption stages whereas in later stages, political and learning
models are more appropriate (Cooper & Zmud, 1990). A study by Rajagopal (2002) on ERP
implementations confirms the use of rational models® in early adoption decisions.

Zmud & Apple (1992) further research the last two stages proposed by Kwon & Zmud
(1987). These stages, routinization and infusion, deal with the incorporation of an adopted
technological innovation “within the organization’s operational and managerial work
systems” (Zmud & Apple, 1992). Routinization is defined as “the permanent adjustments of
the governance structure” to account for the new innovation, whereas infusion is defined as
“the adjustments in work systems and social systems to fully appreciate the innovation’s

27 (Zmud & Apple, 1992). The results of the research indicated that routinization does

impact
not fully take account for the incorporation process and occurs at a more rapid rate than
infusion. This seems logical since top-down mandates for incorporation are easier set about
than actual every-day implementation that infusion refers to. Zmud & Apple (1992) note that
a different set of foci might be needed to support the infusion process, as compared to the
routinization process. These foci should be more arranged towards the individual acceptance

. . 28
of an innovation™. The following section on IT innovations discusses various adoption

contexts.

IT adoption contexts

Fichman (1992) developed a matrix that maps four IT adoption contexts according to the
locus of adoption (individual versus organizational) and the characteristics of technology
(significant network externalities and knowledge barriers). This matrix can be seen in figure
8. Cell one more or less matches the classical diffusion innovation theory, whereas the three
other quadrants represent various levels of complexity. Here, classical diffusion theory alone

is not a sufficient explanatory value and may be even of minor importance (Fichman, 1992).

> MRP stands for Material Requirements Planning, an IT application used in manufacturing firms since the
1980s to support production planning and control.

26 For example cost benefit analyses and vendor screening.

27 This idea might be easier to grasp if stated that infusion is the level of bottom-up acceptance of the innovation,
while routinization is top-down recognition of the adoption decision.

*% This relates to the Technology Acceptance Model (TAM) of Davis (1989), which relates the actual usage of an
(IT) innovation to the intention and attitude of the user. This would mean that to reach higher infusion levels,
one should influence the perceived usefulness and ease of use of an (IT) innovation.

42

© T. van der Luer 2005

Fichman argues for the inclusion of additional variables as control or independent variables,
as well as more in-depth studies of fewer organizations.

Adoption research focuses on one of these quadrants. But, individual adoption of a
type two technology can, by means of aggregate effects, lead to organizational adoption. For
example, various researchers (Zmud, 1982; Swanson, 1994) make a distinction between the

administrative core and

technical core, which each - Classical diffusion 3 || -Cell2and 3 4
variables (cell 1) variables
has its own goals and - Managerial influences
Type 2 - Egtlca “mass I
vested interests. It is natural {hlggulﬁgg:ﬁge :|mlme%?ﬁ'£1ﬂcw
. . . network characteristics
that technical innovations externalities) |- Institutions for lowering
knowledge barriers

emerge in the technical

core, and reaches the other _Class of

. g . Technology - Classical diffusion 1 | |- Classical diffusion 2
core indirectly, and vice variables: variables EDEII 1)
o Perceived innovation - Organizational
versa (Fichman, 1992). Type 1 characteristics characteristics
(low knowledge| o© Aﬁlcpter i - Organizational decision
Qi burden, low characteristics processes
This is also a common network o Information sources & | |- Stage of implementation
. externalities) communication - Competitive effects
sequence in the case of channels - Supply side factors
o o Change agents & - Economic factors (price)
OSS, where individuals at opinion leaders - IS/T group
- Managerial influences characteristics
the IT/IS department are Individual Organization

often the first to come up Locus of adoption

with OSS for problems. Figure 8. IT innovation adoption context.
When considering the matrix in figure 8 a logical question to arise is to what extent OSS can
be considered a type one or type two technology, and which of the variables best explain OSS

adoption. The following section addresses these issues in regarding OS as an IT innovation.

OS as an IT innovation

OS and OSS have been discussed in chapter one. When considering OS as an IT innovation,
there are two viewpoints:

1. OS as a software development methodology, partly represented by the use of non-
restrictive licenses and publicly available source code, as a process innovation®.

2. The actual products of the open source development process, that is OSS, as a product
innovation.

Despite the fact that an OSS product does not have to be an innovation by definition, it does
possess some unique characteristics. As concluded in chapter one, this thesis considers the

second viewpoint, i.e. that OSS products contain some unique characteristics. When

¥ The difference between product and process innovation is , among others, discussed in Zmud (1982)

43

© T. van der Luer 2005

considering the matrix by Fichman (1992) discussed in the previous section, where does OSS
fit in?

As considering the type of technology OSS represents, one can only generalize to a
certain extent. Of course, the types of software offered by OSS solutions are also ‘everyday’
appliances, such as word processing software, which should not pose a significant knowledge
barrier to the user. However a lot of OSS is originally developed for the Linux operating
system (West & Dedrick, 2003). The Linux bias in OSS does pose a knowledge barrier to the
largest part of the potential adopter population, i.e. the end-users. For technical users,
especially of large corporate IS/IT departments, this is expected to hold to a lesser extent
since they are expected to have specialized workers that know how to operate Unix-like
systems. However, not all firms have an IT department or the specific skills needed.

Secondly, network externalities are likely to hold for OSS, as well as on the demand
side as on the supply side. OS communities need strong initial leadership and a critical mass
of code to get started, and users need to be convinced of a product’s advantages. For the
demand side, reaching critical mass is likely to be easier due to the zero price (higher
triability) and the fact that software is a digital good. As mentioned, the spread of OSS can be
expected to be somewhat dependent on the spread of the Linux operating system. However,
most OSS that has become popular has provided support for other operating systems via its
own user community. Thus the limited and technical-oriented OSS supply and the Linux bias
in combination with a Microsoft Windows dominance, argues for OSS as a type two
technology. In contrast, OSS supply and usage is rapidly growing which results in more type
one technology applications.

The locus of adoption can be individual or organizational. Here it is up to the research
to determine which context to use. In this thesis, OSS at the organizational level will be
studied. However, it should be kept in mind that individual adoption in an organizational

setting can lead to organizational adoption.

44

© T. van der Luer 2005

Conclusion

This chapter discussed the DOI literature and the limitations of the classical perspectives.
These perspectives are not likely to be able to explain more complex technology adoptions.
They need to be extended with various factors like network externalities, knowledge barriers,
and other context specific variables in order to be able to explain for such developments.

Besides the various extensions to the DOI literature, the context of IT innovations has
been considered. It has been reasoned why different issues are likely to be more or less
influential in the case of IT innovations. After having already reduced the level of analysis
from general technology innovation diffusion to the diffusion of IT innovations, further
downsizing has occurred as considering OSS as an IT diffusion.

In relation to this thesis’ research the scope has been defined in more detail. When
considering the type of research, this thesis will be an adopter study as stated by Fichman
(2000). The specific adoption context will include several type one and type two technology
OSS applications in an organizational setting, according to the Fichman (1992) matrix. This
results in a measure of innovativeness limited to a binary adoption / non-adoption outcome of
OSS. The research design will further be outlined in chapter 4.

The next chapter will outline the various factors influencing OSS adoption, and
determine which factors are unique and characterizing for OSS adoption in comparison to
‘traditionally developed’ proprietary software. Secondly, hypotheses are proposed on basis of

these characteristics and their influence on OSS adoption.

45

© T. van der Luer 2005

Chapter 3 — OSS adoption:
Framework, determinants, and hypothesized relationships

From the first chapter it has become clear that open source development is a very viable
software development process in the current network economy and widespread use of the
internet. Following, chapter two showed that the adoption, diffusion, and infusion of new
technology innovations is highly context specific and dependent on many different factors. In
this chapter determinants of the adoption of OSS are discussed, thereby integrating the first
two chapters.

First, the OS adoption model as proposed by Kwan & West (2003) will be highlighted
and used to develop a context for this thesis’ research. Secondly, two classification schemes
that can be used to categorize the different contextual factors that might influence OSS
adoption will be outlined. One of the schemes is selected and the various factors in the OSS
context that have been found in various studies are provided along with the hypothesized
effects they might have on OSS adoption. After this discussion, the various hypotheses will be

summarized. In the end a short conclusion will be given.

Open source adoption model

OSS has distinct features, for example in terms of costs and licensing, which influence the
OSS adoption decision. Kwan & West (2003) have developed a conceptual model, which

shows the evaluation process of enterprises towards OSS adoption. This model provides a

Decision Points

Available
Products

Figure 9. Model for open source adoption

46

© T. van der Luer 2005

setting for this thesis’ research. The conceptual model is shown in figure 9, where the relevant
part (left hand side) for this thesis has been put in contrast to the rest of the model.

This model distinguishes between the various aspects that influence firms in the OSS
adoption decision: industry context, firm context, standard attitudes, and open source
attitudes. Together, these aspects determine the policy the firm employs to guide procurement
decisions. Depending on the market supply of OSS products and the match of these products
with the firm’s application context, in terms of risk, cost and features™, the result is a certain
choice set. This choice set holds the potential ‘nominees’ for adoption. This thesis will focus
on the factors that specifically influence OSS adoption and evaluation, ultimately leading to
that choice set. The next section will discuss the classification scheme, which will be used to

categorize the various factors.

Classification scheme for OSS adoption determinants

Two potential classification schemes for influencing factors on OSS adoption decisions have
been identified: The TEO scheme discussed by Tornatzky & Fleischer (1990) and the

classification scheme presented by Fichman (2000).

TEO scheme

TEO stands for technology, environment and organization. This classification scheme maps
the various factors under these three categories and interlinks them, while putting the
innovation decision making decision in the middle. These three elements are conceived to
interact with each other and to influence the adoption decision (West & Dedrick, 2003).

When compared to traditional diffusion innovation theory, this model includes various
‘additional’ factors that where discussed in the previous chapter, i.e. organizational and
environmental factors. However, it does not explicitly include factors such as knowledge
barriers or network externalities. Since the categorization is so broad, this does not pose a
problem. In a research study on the factors affecting open systems adoption the TEO model
has been successfully used and adapted to the open systems adoption context to include such
variables (Chau & Tam, 1997). Another classification scheme is provided by Fichman (2000)

and will be discussed next.

%% This relates to the applications portfolio discussed in chapter one and two. The position an application takes in
a firm’s application portfolio determines the importance of the application’s risk, features, and cost.

47

© T. van der Luer 2005

IT diffusion and assimilation scheme

In the previous chapter, the three general research questions in diffusion innovation research
as presented by Fichman (2000) were discussed. Fichman also provides a classification
scheme for factors that influence diffusion of (IT) innovation related to these three questions.
One of the conclusions of the previous chapter was that this thesis is an adopter study, which
generally focuses on the research questions 2 and 3 as identified by Fichman. In terms of the
classification scheme, Fichman maps this to the categories ‘technology-organization
combination’ and ‘organizations & adoption environments’. Therefore, these categories will
be the categories in which various determinants have been identified. An overview is given in
figure 10. The other category, ‘technologies and diffusion environments’ has not been
included but is shown for the sake of completeness. Additionally, network externality effects

have been added to the ‘organization & adoption environment’ category.

Technology - Organization
Combination
O{Qa&lz'llzation-_lbrlllnomtlon fit:
- Task compatibility Organization & Adoption
- Skill compatibility Environment
Innovation perceptions: Firm & IS unit characterist.:
- Gnmpﬂtibﬂﬁy - 15 Unit budget & slack
- Comy II.E""\" Diffusion and assimilation [eStnIres
- Relative advanta Adoption environment:
) Egst" ¢ advaniage [Innovation adoptability | ¢ |- Role of IT to the business
- Source code availability » strategy
oo " Network extemalities:
?l?m?n de“'d'ery innovativeness . Cnmmunlty S'Iz-e H
- #echnnl.cgy championship - Platform sdoption
- 3rd party support
- Top-management support

Figure 10. Classification scheme of determinants of OSS adoption.

This classification scheme is less straightforward that the TEO scheme, but they do
have overlap. This scheme more or less incorporates the TEO scheme and is specific towards
the adoption of IT innovations, which includes OSS. It comprises all factors discussed in the
previous chapter that extend the classical diffusion innovation theory. Because of this
completeness, this scheme is adopted to guide the classification of OSS adoption factors.
These various factors are already included in figure 10 and will be discussed in the next

section.

48

© T. van der Luer 2005

Factors influencing OSS adoption

This section argues for various factors that are expected to influence OSS adoption and

diffusion. This is done according to the categorization provided by Fichman (2000).

OSS - organization combination

Whether OSS will fit with a specific organization will not only depend on specific
characteristics of the open source product or the organization, but also on the specific
combination of these factors. This is best described by terms as compatibility (Fichman,
2000). Two types of compatibility are discussed in this section: task compatibility and skill
compatibility.

Organization - OSS Fit

Task compatibility
The match between a certain task and a solution is referred to as task compatibility. As

discussed in the first chapter, the supply of OSS solutions is rather biased towards certain
categories that comply most with the motivations of the developers. Though, hybrid solutions
have come up of firms supporting OSS in various ways, fitting them to the demands of
commercial organizations by providing e.g. support and consulting. Nevertheless, these
hybrid models do not take away the fact that most OSS is designed for a rather limited
problem domain, often rather technical in nature or at least technically packaged. Thereby
these firms supporting OSS do not enlarge the supply of OSS products, but they only make
the available supply qualitatively better, i.e. more attractive to adopt.

An area where OSS has traditionally been well positioned is in the provision of
internet related services. From the task compatibility viewpoint this makes sense, because for
most of these internet services®' there is no direct impact on the end-users in terms of platform
switching costs (West & Dedrick, 2003). This leads to the first hypothesis:

H;: Perceived task compatibility is positively associated with OSS adoption

Skill compatibility
One could argue that the OSS available is open source, which would make it easier to adopt

and adapt such a solution to the company’s demands. Nevertheless this is susceptible to a

couple of conditions:

3! Examples of such internet services are web server software, content management systems, and e-mail servers.

49

© T. van der Luer 2005

1. Depending on the type of application (i.e. strategic or support) and the OSS license
(i.e. restrictive versus non-restrictive) such adaptations might not be an option since
the application might have to be ported back to the open source community as defined
in the license. Obviously, for a strategic application this porting back might not be a
realistic option.

2. Adaptation of the software to the firm’s wishes can easily get very costly. For support
applications these costs might not outweigh the benefits of closed-source, off-the-
shelf, solutions.

3. The firm might not have the required knowledge in-house to do the adaptations by
itself, i.e. the firm might not have the absorptive capacity to implement the OSS
(which might also be the case for a standard implementation of the product).

The first two issues are more related to the OSS license and the level of task compatibility.
The third factor relates to the skill compatibility, i.e. does the organization possess the
required skills? Such skill compatibility is expected to positively influence OSS adoption,
resulting in the second hypothesis:

H,: Perceived skill compatibility is positively associated with OSS adoption

Another factor in terms of skill compatibility concerns the platform a firm employs
(Unix versus Windows). If a firm is locked-in to Windows, it is harder to switch to Linux in
terms of skills and complementary products. This aspect is discussed in the section on

network externalities. The next section will discuss innovation perceptions in the case of OSS.

OSS Perceptions

When referring back to the categorization scheme, innovation characteristics are part of the
technology-organization combination. Perceptions on innovation characteristics and attributes
are key to the adoption decision (Fichman, 2000). As discussed in chapter two, classic

diffusion of innovation literature has provided for several of these characteristics.

Classic Innovation Characteristics
.. 32 .
Classic innovation characteristics are the five innovation characteristics™ as outlined by

Rogers (1995). Tornatzky & Klein (1982) did a meta-analysis on various research in this field
where they only found support for three out of these five factors. However, in that same study
Tornatzky & Klein (1982) found different shortcomings in the various studies that were
analyzed. Four characteristics of OSS will be highlighted in this section:

32 From Chapter one: Relative advantage, compatibility, complexity, triability and observability.

50

© T. van der Luer 2005

Compatibility
Complexity
Triability

4. Relative advantage

wN

Relative advantage is taken as a proxy for several variables often cited in OSS studies: cost
and source code availability.

Compatibility

Compatibility of an innovation is referred to as “the degree to which an innovation is
perceived as being consistent with the existing values, past experiences, and needs of the
receivers” (Tornatzky & Klein, 1982). The previous section on organization-OSS fit already
dealt with the compatibility issue in terms of skills and tasks.

The extent to which OSS is compatible at a technological level depends. It will be
subject to, among other factors, on the current technological infrastructure and applications
portfolio of the firm. This is especially true for the availability of specific key applications on
which day-to-day business depends. These applications are often built towards a specific
operating system and API’® and cannot be ported to another operating system (Linux), for
which OSS is often developed (West & Dedrick, 2003). In addition, certain 31 party
applications that are used might not be compatible. Third, the current IT supplier or party that
IT aspects are outsourced to in terms of operational or consultancy tasks, does not always
support OSS.

Hj: Perceived compatibility with key applications and technological infrastructure is
positively associated with OSS adoption

Complexity

Complexity is “the degree to which an innovation is perceived as relatively difficult to
understand and use” (Tornatzky & Klein, 1982). In the case of software, this definition of
complexity can be mapped to various terms depending on the user type: transparency due to
the availability of the source code, quality of the source code, quality and availability of
documentation, ease of maintenance, functionality, and compliance to standards®®. Overall,
the complexity of a technological innovation is negatively related to its adoption (Tornatzky
& Klein, 1982), which leads to the following hypothesis:

Hy: Perceived complexity is negatively associated with OSS adoption

33 API stands for Application Programming Interface, which is the interface between a system and the software it
interacts with.

** Since the definition of complexity is very related to the concept of usability, which has been discussed in
chapter 1, and the fact that in practical terms, constructs for usability are found to be rather similar to the ones
for complexity, usability has not been put in a separate hypothesis.

51

© T. van der Luer 2005

Since the source code of OSS is per definition freely available, it is less complex and
more transparent to the user in the sense that the software is not per se functioning as a black
box. However, the quality of the source code could be an issue. Proprietary software
development often adheres to strict principles to get to the required product features in a
minimum time span and within budget. On the other hand, developers of OSS have more time
to review the code and come up with alternative solutions. In the case of code documentation,
OSS is at a disadvantage. Since this is one of the less-attractive jobs in open source
development, documentation is often lagging behind with actual releases, is incomplete or
even not available at all. Documentation is one of the fields where commercial companies
often fall in. These firms often have extensive knowledge with the OSS product to provide
documentation, or they can provide complementary products, implementation support, or
training. Fourth, Linux based systems have the reputation to be very low on maintenance time
(West & Dedrick, 2003).

Triability

Triability is the extent to which an innovation can be “experimented with on a limited basis”
(Tornatzky & Fleischer, 1982). The ‘limited basis’ might traditionally refer to the opportunity
cost and monetary cost spent on the experimentation. For OSS products, the direct monetary
cost is often zero, since there are no license fees of any kind. Often, commercial products
offer a trial version of their products, but these are often only functional for a limited period
of time or with limited functionality. However, West & Dedrick (2003) found no impact on
triability between software that was ‘free’ or which could be tested for a nominal cost.
Additionally, testing OSS products while such technology is unfamiliar to the testing person
might involve significant time investments.

What often appears to be the case is that in many organizations programmers (i.e.
technical personnel) casually test OSS at home, which reduces the perceived risk of open
source adoption and influences the overall organization in adopting OSS (West & Dedrick,
2003). Therefore, triability is reflected in hypothesis five as:

Hs: Perceived triability is positively associated with OSS adoption
Relative advantage
Relative advantage is an innovation characteristic that has been found not so easy to define
and study. Since the term is so broad, it is often used as a category in which various factors
are dumped. If not, it is mostly referred to as the ‘gain in effectiveness’ by using the

innovation. It was found to have a positive relationship with innovation adoption. (Tornatzky

52

© T. van der Luer 2005

& Klein, 1982). In the case of OSS, relative advantage seems a category in which various

factors can be put, e.g. source code availability and cost.

Additional characteristics under relative advantage

Cost
Total Cost of Ownership (TCO) of OSS and proprietary software is an area of continued
debate. Results vary, mainly due to different measurement scales and (non-) inclusion of
certain variable and indirect (qualitative) costs (Knubben, 2004). Chapter one outlined the
various factors that can be part of such a cost analysis. What is generally accepted though, is
that replacing a ‘Windows environment’ with a ‘Linux environment’ brings one-time
migration costs, which can provide a significant barrier to adoption (West & Dedrick, 2003).
These migration costs include the evaluation costs, implementation labor costs, consultancy
costs, human switching costs, and retraining costs.

Hg: Perceived switching costs are negatively associated with OSS adoption

On the other hand, one could argue that such migration costs are one-time sunk costs
and they should not turn down the adoption decision, and in fact the investments can have a
very short payback period (Fitzgerald & Kenny, 2003). OSS on the Linux platform offers
some definite and short term cost advantages in terms of license fees, hardware demands (in
terms of requirements and compatibility), and downtime (Knubben, 2004). In practice, cost
savings associated with OS often prove important to the OSS adoption decision (Fitzgerald &
Kenny, 2003; Ghosh & Glott, 2003; The Dravis Group, 2003). The other more celebrated
advantages (e.g. reliability) seem to be of far lesser importance. Therefore, it is argued that:

H7: Perceived hardware cost savings are positively associated with OSS adoption
Hs: Perceived software cost savings are positively associated with OSS adoption

Source code availability

A second feature of OSS is the fact that its source code is freely available®. This effects OSS
adoption at two levels, direct and indirect. The direct effects relate to the opportunity it
provides for customization. Yet study shows that not all, even very few, firms are primarily
interested in the availability of the source code because adapting the software does not belong
to their skill set, or they are just looking for off the shelf software solutions (Fugetta, 2003;
West & Dedrick, 2003). In addition, just having the source code is often not enough to adapt
the software, which also requires some documentation for guidance (Fugetta, 2003). On the

other hand, source code does provide for more flexibility and control regarding supplier

33 For a discussion on what source code is, and what is meant by free availability, see chapter one.

53

© T. van der Luer 2005

independence (The Dravis Group, 2003; Fitzgerald & Kenny, 2003; Ghosh & Glott, 2003).
Therefore, it is argued that:

Hy: Perceived supplier independence is positively associated with OSS adoption

Indirect effects relate to the advantages it brings in the development process. Perceived
indirect advantages include increases in safety, reliability, stability, continuity and
interoperability (Coppola & Neeley, 2004; The Dravis Group, 2003; Berlacon, 2002a).
Interoperability however, does not only come from source code availability, but mainly by
compliance to open standards (Fugetta, 2003).

Because of the fact that source code availability does not provide direct disadvantages
to the firm, and indirect are expected to be merely positive, the following hypotheses are
proposed:

Hio: Perceived safety is positively associated with OSS adoption

Hi;: Perceived reliability is positively associated with OSS adoption

Hji,: Perceived stability is positively associated with OSS adoption

Hjs: Perceived continuity is positively associated with OSS adoption

H4: Perceived open standards compliance is positively associated with OSS adoption

OSS delivery systems

Innovation delivery systems provide the means by which the implementation process is
managed (Fichman, 2000). This does not only include the final stages™ as defined by Kwon
& Zmud (1987), but also the first stages. After all, this study focuses on the adoption context
up to the final decision point. In this section, four aspects of the OSS delivery system will be

considered: technology championship, third party support, and top management support.

Technology championship
Technology championship is an important factor in innovation adoption. This is also expected

to be the case for OSS adoption. OSS is often a rather peculiar concept from a manager’s
point of view. Consequently OSS is perceived more risky and less legitimate. Therefore, the
social influence of the technical core of the firm as a technological gatekeeper (Orlikowski,
1995) is expected to be considerable.

Individual or local adoption of OSS by information technology specialists often takes
place because these persons are not scared or busy with the business aspect of OSS but work

with OSS in a pure technological fashion (Fitzgerald & Kenny, 2003). This often introduces

3% The six stages referred to are: initiation, adoption, adaptation, acceptance, routinization, and infusion.

54

© T. van der Luer 2005

OSS to the firm, and such pioneers often act as advocates of OS technology. In addition,
adopters of OSS are not only found to disseminate information on OSS, but are also turning
into advocates of the OS movement which try to convince others to adopt (Bonaccorsi &
Rossi, 2003b). This leads to the following hypothesis:

His: Perceived OSS championship is positively associated with OSS adoption
Third party support
A second implementation factor is third party support. The previous chapter discussed the
importance of third parties to lower knowledge barriers and their role in innovation
packaging. In the case of OSS adoption, such firms®’ act as change agents promoting the
switch towards open source, not only in terms of recognizing the technical maturity and
proficiency of the products and thereby providing a sense of legitimacy, but also in terms of
making their own products compatible and thereby providing complementary products. In
addition, these firms provide consulting and training services and the like, which promotes OS
adoption. The third party support by firms like IBM, HP, and SUN has been found to be
especially important for larger organizations who are used to technology and support
contracts from large IT vendors (West & Dedrick, 2003). This third party support is therefore
expected to positively influence OSS adoption:

Hj¢: Perceived third party support is positively associated with OSS adoption

Top management support
To fully adopt OSS, top management support is needed. Their support provides the

implementation with enough backing in terms of authority and resources. Yet, top
management is often not easily convinced of OSS because such software lacks the proper
legal backing. This is expected to be certainly true for business critical applications and
applications which have high visibility, i.e. are on the desktop (Fitzgerald & Kenny, 2003).
Top managers often do want, at least some, support, whether that is actually really
needed or not, to justify their actions. On the other hand OSS can offer cost advantages and
lower supplier dependence. Implementing a risk mitigation process that addresses legal,

. . 38
financial, and technical

pitfalls when considering OSS adoption (Casanova, 2003) seems
critical to evaluate OSS and convince management. Once top management is convinced it is
expected to be positively correlated to open source adoption:

Hy7: Perceived top management support is positively associated with OSS adoption

37 Examples of firms supporting the open source community are HP, IBM, and SUN and their adoption of Linux
¥ Technical aspects include support, security, and development issues

55

© T. van der Luer 2005

Organizations & adoption environment

Some organizations are found to be more innovative than others. The source for this
innovativeness is often found in the organizational and environmental characteristics
(Fichman, 2000). This section considers three aspects of the organization and adoption
environment: characteristics of the firm and the information systems department, the adoption

environment, and related to the adoption environment, network externalities.

Firm & IS unit characteristics

When considering OSS adoption, the organizational characteristic that will be discussed in
this section is the size of the information systems department in terms of slack resources.
Other factors that could be included are the organizational deployment of internet services and
the technical expertise of the workforce. However, these aspects are likely to correlate with

skill- and task-compatibility, aspects that are already included in hypotheses one and two.

Slack resources and budget of the IS unit
Organizational size, as discussed in chapter two, is often taken as a stand-in for other

positively related variables like slack resources, IS department size and scale. Slack resources
can work in two directions. First of all, slack human resources in combination with limited
financial resources and a sufficient set of skills provide solid ground for OSS adoption. On the
other hand, too much slack is likely to value convenience and relaxed investment rational
resulting in loose management choosing the ‘easy way out’. This often results in proprietary
software (Ghosh & Glott, 2003; West & Dedrick, 2003). This leads to the following
hypothesized relationships:
H;g: Abundance of slack resources is negatively associated with OSS adoption

Hjo: Limited financial slack resources in combination with enough slack in human
in resources is positively associated with OSS adoption.

Adoption environment

The adoption environment considers factors external to the firm. One of these is the level of
competitiveness and market concentration. It is hard to generalize these market factors to
overall OSS adoption. One could think of many hypothesized relationships that often show
difficult to be formally linked to adoption (Chau & Tam, 2000). Two determinants to OSS
adoption coming from the adoption environment are discussed here, the role of IT to the

business strategy and supply side economics.

56

© T. van der Luer 2005

IT and the business strategy
The extent to which market characteristics influence OSS adoption also depends on the firm’s

business strategy. The business strategy represents the way in which a firm has decided to
operate in, and react to, its environment. The centrality and importance of IT to the business
strategy has been found to correlate to the willingness to adopt. In such situations a small
decline in costs per unit leads to much larger overall savings and strategic advantages gained
by IT innovations are more important than in organizations where IT plays a support role
(West & Dedrick, 2003). Thus, the importance of IT to the business strategy is expected to
correlate positively to OSS adoption:

H,o: Perceived importance of IT to the business strategy is positively associated with
OSS adoption

Although not included by Fichman as an appropriate factor, the adoption environment
also encompasses the number of other adopters and levels of diffusion reached for OSS. The

factors are generally referred to as network externalities.

Network externalities
From chapter two it followed that in some case of technology adoption, network externalities

and compatibility with dominant interfaces are more important to the adoption decision than
actual technology features and product characteristics. Bonaccorsi & Rossi (2003b) argue that
the adoption and diffusion of OS are influenced by:

The perceived intrinsic value

The negative network externality effect coming from the dominant standard
The positive network externality effect coming from the community access
The competitive effects by commercial market players in the software industry

0Oo0DOo

They then simulate the adoption decision for a population of heterogeneous interacting agents
using a model. The simulation results show that OS diffusion “indeed depends on the initial
intrinsic values assigned to the technology by adopting agents”. As a general result they
conclude that “under many conditions commercial software and OSS are likely to coexist even
in the limi” (Bonaccorsi & Rossi, 2003b, p. 1256). The perceived intrinsic value is primarily
determined by the perceived innovation characteristics that have been previously discussed. In
this section two other aspects are discussed: community size and platform adoption.
Community size

As should be clear by now, the supply side environment of OSS is rather different as
compared to proprietary software. It relies on communities of, often volunteer, contributors,
which often do not undertake any marketing whatsoever, and that rely heavily on open

standards and other OSS. In addition, an often-cited advantage of OSS is that it reduces

57

© T. van der Luer 2005

supplier dependence, i.e. source code availability, community support, and reliance on open
standards minimize any vendor lock-in potential, which often take place for proprietary
software (Overby, Bharadwaj & Bharadwaj, 2004). All in all, the size of such a community is
likely to result in various positive effects for adopters (Stewart, Ammeter & Maruping, 2005).
It is therefore argued that community size positively relates to OSS adoption:

H,;: Perceived community size is positively associated with OSS adoption
Platform adoption
OSS is very dependent on the platform choice: Linux versus other operating systems, and the
type of hardware used (West, 2002; West & Dedrick, 2003). Many of the OSS applications
have been primarily constructed for Linux operating systems. Having Linux is even a pre-
condition to most OSS. Therefore, the greater the market acceptance of Linux, the more
positive the effects (read: lower switching costs) will be for OSS adoption due to e.g.
complementary assets, credibility, lower training costs, easier file sharing, etc. Yet, it has been
found of major importance that complementary assets provide good fit instead of the sheer
volume of available complements. In addition, ‘Unix shops’ are more prone to switch to
Linux than ‘Windows shops’ in terms of compatibility of complementary applications (West
& Dedrick, 2003) and lower knowledge barriers (Fitzgerald & Kenny, 2003).

Hardware is another issue. Linux and MS Windows run on commodity hardware (Intel
chips). Unix on the other hand, often runs on proprietary hardware. Therefore, MS Windows
is more compatible in terms of hardware (West & Dedrick, 2003). See figure 11 for an
overview. Lintel (Linux and Intel) therefore are expected to be more attractive to Unix shops
since they only need to switch to cheaper Intel platforms. For Windows shops the problem

lies in the fit of complementary assets, which is harder to overcome.

Unix platform Lintel platform Wintel platform
Applications | Unix applications H—' Unix applications | |‘.ﬁ.'1ndnws applications |
Operating system [Proprietary Unix | | Linux | [Proprietary Windows |

Hardware |Frupdnta|y m| |Cnmmn-dity hardware |—HCcmmndﬂy hardware |

Figure 11: Platform standards.

Also, of major importance seems to be whether a firm’s IT skills are Windows based
or Unix based. Windows users do not possess the necessary skill set and are thereby often too
locked-in to switch to Linux-based OSS. “The transition to Linux is incremental for Unix

shops where skills are easily transferable but discontinuous for Microsoft shops that lack

58

© T. van der Luer 2005

such skills” (West & Dedrick, 2003). This discussion provides background for the following

hypothesis:

H>;: A background as a ‘Unix shop’ is positively associated with OSS adoption

The discussion on network externalities has finished the discussion on determinants of OSS

adoption. An overview of all hypotheses is given below.

Overview of hypotheses

Table 3 — Overview of hypotheses

Determinant

Hypothesis

Task compatibility

H1: Perceived task compatibility is positively associated with OSS adoption

Skill compatibility

H»: Perceived skill compatibility is positively associated with OSS adoption

Hs: Perceived compatibility with key applications and technological

Compatibility infrastructure is positively associated with OSS adoption
Complexity H4: Perceived complexity is negatively associated with OSS adoption
Triability Hs: Perceived triability is positively associated with OSS adoption
Hs: Perceived switching costs are negatively associated with OSS adoption
c H7: Perceived hardware cost savings are positively associated with OSS
osts

adoption

Hs: Perceived software cost savings are positively associated with OSS
adoption

Source code availability

Ho: Perceived supplier independence is positively associated with OSS
adoption

H1o: Perceived safety is positively associated with OSS adoption

H11: Perceived reliability is positively associated with OSS adoption

H.2: Perceived stability is positively associated with OSS adoption

H.3: Perceived continuity is positively associated with OSS adoption

H14: Perceived open standards compliance is positively associated with OSS
adoption

Technology championship

H1s: Perceived OSS championship is positively associated with OSS adoption

Third party support

H.6: Perceived third party support is positively associated with OSS adoption

Top management support

H17: Perceived top management support is positively associated with OSS
adoption

IS slack resources and budget

H1s: Abundance of slack resources is negatively associated with OSS adoption

H19: Limited financial slack resources in combination with enough slack in
human resources is positively associated with OSS adoption.

IT in business strategy

H2o: Perceived importance of IT to the business strategy is positively associated
with OSS adoption

Community size

H21: Perceived community size is positively associated with OSS adoption

Platform standards

Hj,: A background as a ‘Unix shop’ is positively associated with OSS adoption

59

© T. van der Luer 2005

Conclusion

This chapter has discussed the various factors that are likely to influence the adoption of OSS.
These factors have been categorized according to the classification scheme presented by
Fichman (2000) and can be placed in context by means of the conceptual model for OS
adoption as put forward by Kwan & West (2003). Finally, this has lead to hypotheses which
all indicate a relationship between an independent variable and OSS adoption.

Overall, taking in consideration the various sources, it can be said that the availability
of the source code does not seem the most important advantage OSS offers to adopters. It is
more the indirect effects of source code availability like supplier independence that seem
advantageous. In addition, the note of free as in ‘free beer’ does appear to be appropriate as of
free in ‘free speech’ in many cases. In short, at the bottom line in many businesses, the fact
that OSS costs nothing to use is more important that the ideological reasoning behind the free
availability of source code, as posed by OSS proponents. However, one is not likely to exist
without the other.

One note should be made on the hypothesized importance of OSS licenses on OSS
adoption. This relationship could be placed under relative advantage. However, seen the type
of research this requires, this hypothesis does not seem to fit in this thesis. For sake of
completeness, the original section and hypothesis on this subject can be found in appendix I.
The next chapter will present the research methodology that has been used to acquire the data

set and test the hypotheses outlined in this chapter.

60

© T. van der Luer 2005

Chapter 4 — Research methodology

The previous chapter identified the various hypotheses that need to be tested to answer the
problem statement of this thesis. This chapter will present the research methodology that has
been used to accomplish this. To conduct the research the survey method has been used, in the
form of an on-line questionnaire. Details of this approach can be found in the following
section on research design. Thereafter an overview will be provided of the various
instruments that were used to operationalize the hypotheses. Third, a short discussion of the
data collection procedure. Fourth, the initial sample selection and the actual response set will
be shown. Fifth, the validity of the instruments will be discussed. In the end, a short

conclusion will be given.

Research design

The research that had to be done for this thesis is classified as descriptive research (Churchill,
2001, p. 126), with the objective to determine the proportions of firms in a specified
population (for-profit firms) behaving in a certain way (adopting OSS). This is done in order
to make specific predictions on which factors influence the adoption of OSS. The research
was implemented with a cross-sectional study involving a sample of firms from the
population of interest, for-profit firms™. This has resulted in a dataset that provides a snapshot
of data of interest at a single point in time and can be used to test the various hypotheses. The
data collection method used was the survey method.

In order to gather the data, a questionnaire was constructed. The questionnaire was
designed to measure respondent perceptions on each of the hypotheses. In order to maximize
the validity of the measurements, instruments from prior research in various areas have been
used to construct the questionnaire. The following section will present in detail how each

variable was operationalized.

Operationalization of variables

Most of the instruments that have been used to construct the questionnaire were taken or
adapted from previous research in technology innovation diffusion, information technology,
and marketing. However, for some hypotheses no exact replicate instrument could be found.

In these cases, an instrument was constructed or seriously adapted.

¥ More on the sample design in one of the following sections.

61

© T. van der Luer 2005

Most items where measured by one or more statements on a 5-point Likert scale. In
order to gain additional insights in the two most important variables that had been identified
in chapter four, supplier independence and software cost, the possibility for posting additional
comments was provided after the related constructs for these variables. In addition, several
other variables (e.g. demographic) asked for a different scale.

The dependent variable, adoption of OSS, was measured by asking respondents to
indicate whether they used such software, and if so, if they could specify which of a listed
number of OSS products they used. This list consisted of a number of very popular OS
products. The respondent could choose one of the following options:

A. []Our organization does not use open source software,
because................

B. []Our organization does not use open source software and I am not
familiar with this concept. Therefore, I cannot answer this question.

C. []Our organization does use open source software, among which are:
(followed by a list of OSS)

In case of option A, the respondent was taken to an alternative page, on which it was shortly
explained that although the repondent’s organization did not use OSS, the respondent could
still fill out the remaining questions in order to measure non-adopter perceptions. When a
respondent would opt for the second answer, option B, the respondent was taken to another
page and was shown a text in which the respondent was thanked for the co-operation, and the
survey was finished. As a third, when a respondent would indicate that his/her organization
did use OSS and possibly indicated to use any of the listed software, the survey would
normally continue.

Table 4 provides an overview of the operationalization of all variables. The first and
second column indicate the involved hypothesis and variable description. The third column
refers to the question / item in the survey (which can be found in appendix G). The fourth
column provides the number of items from the source used for that question. The fifth column
displays the source from which the instrument has been taken. A full citation of these sources
can be found in the references. Items for which no matching construct could be found and

which had to be constructed, are indicated with a dash in the source column.

62

© T. van der Luer 2005

Table 4 — Operationalization of variables

Hypothesis

Variable Item

Number
of items

Source / Adapted From

Filter and warm-up quest

ions

Demographics

General questions —

determine sector a 1 e-Cology Corporation (2003)
Demographics | General questions — b 1)
determine ICT manager
Demographics . e-Cology Corporation (2003
His, H?g P Se”e“’!' qugstlons - c,d 2 Commigs};ion gf Europe(an Cc))mmunity
etermine size SME-LE (2002)
Lr;(:;%elgdent (F)llstesr question — adopted e 1 Berlacon (2002)
Organizational characteristics
His IS slack resources and ab 2)
budget - abundance ’
Hio ° jgae"tk_rﬁfn‘?ferge:;”d a 1 Ghosh & Glott (2003)
H1g b 1 -
Hzo IT in business strategy a 1 Rathnam, Johnsen & Wen (2004)
Ranking of software characteristics
Hs—His | Overall innovation a 1 Ghosh & Glott (2003)
characteristics
Perceived open source characteristics
Hs Compatibility a-d 4 e-Cology Corporation (2003)
Hy Complexity a-d 4 Moore & Benbasat (1991)
Hs Triability a-d 4 Moore & Benbasat (1991)
He RA — switching costs a-d 4 Berlacon (2002)
H7 RA — hardware cost saving e 1 Berlacon (2002)
Hg RA — software cost savings f 1 Berlacon (2002)
Hs RA — software cost savings g 1 -
Ho—Fhe |RA ilaZﬂﬁ;C(eSCC":)‘* a 1 Ghosh & Glott (2003)
Ho RA — SCA — supplier b 1 Ghosh & Glott (2003)
independence
Ho RA — SCA - supplier c 1)
independence
H1o RA — SCA — safety d 1 e-Cology Corporation (2003)
H11 RA — SCA - reliability e 1 Ghosh & Glott (2003)
Hi2 RA — SCA — stability f 1 -
H1s RA — SCA — continuity g 1 -
Hia RA — SCA — open standard a 1 e-Cology Corporation (2003)
compliance
Implementation issues
His Technology championship a-d 4 Ray & Patnayakuni (1996)
Hie Third party support a 1 Ghosh & Glott (2003)
H;; Top management support a-c 3 Premkumar (2003)
Compatibility of work, tasks, and capabilities with OSS
H; Task compatibility a-c 3 -
H; Skill compatibility d 1 Berlacon (2002)
Adoption environment: Network externalities
Hy, Network externalities — a 1 Frels, Shervani & Srivastava (2003)
community size
H,, Network externalities — b-c 2)

platform standards

63

© T. van der Luer 2005

Data collection procedure

First the questionnaire was composed from the previously mentioned sources in a text editor.
The first version was reviewed and adapted internally. Then, an on-line version of the
questionnaire was developed by making use of the PHP scripting language and a MySQL
database to capture the data. Thereafter the survey seemed sufficient to be tested.

The ‘paper’ as well as the on-line version of the questionnaire were pilot tested by a
few participants, which were ICT professionals and academics. Their responses were not
included in the final result set. Feedback was received on paper, via e-mail, and in face-to-
face meetings. The responses led to some modifications in the questionnaire, for example the
order of the question sets, a review of some of the used instruments, and the way some of the
questions were stated. In addition, the usability of the questionnaire was improved by
reorganizing parts of the layout.

Thereafter, the improved questionnaire was put on-line. The questionnaire was tested
for the most popular browsers, and used cookies and [P-notation to prevent double entries. In
addition, the questionnaire was split up over several pages, in order to capture as much as
information in the database as possible if the respondent decided to stop filling out the
questionnaire.

As a last, all the selected firms (which were put in a database) were sequentially e-
mailed by using a script. In 10 days, about 1770 e-mails were sent to the selected respondents.
These e-mails provided an introductory text and a hyperlink to the on-line questionnaire. In
the e-mail the reader was asked to forward the e-mail to the ICT manager in their

organization. The sample selection and setup are discussed in the next section.

Sample

From the problem statement and previous chapters the only restriction to the sample selection
was the fact that the target organizations had to be for-profit, thus excluding governmental
and educational organizations. This decision was made because non-profit organizations
might bias the response set. It was reasoned that the lower costs associated with OSS might
provide a higher incentive to use OSS in such organizations.

Besides this assumption, certain sectors are logically excluded from a practical point
of view, since they are expected to be too low in IT expenditures, and consequently, software
usage. This should not have to be a problem, since such software could be open source.

However, since the questionnaire was designed for ICT managers having specific knowledge,

64

© T. van der Luer 2005

firms in such sectors were expected not to be able to respond. Such sectors include mining
and agriculture.

The consideration of the level of IT expenditures also applied to the remaining firms.
Firms with higher IT expenditures are likely to use more software in absolute terms, and
thereby have a higher chance of using OSS. In addition, even though firms with higher IT
expenditures do not have to use OSS more, at least the higher importance of IT is likely to
increase their overall knowledge on IT related issues, including OSS. So they are expected to
at least know why they do, or do not, use OSS, and thereby could bias the response rate
towards these firms. This consideration was taken in account when determining the sample.

A selection of sectors was made according to the NACE® categorization and IT
spendings as a percentage of revenue, as mentioned in Berlacon (2002a). To minimize any
bias in response by higher IT spendings, more firms where selected from NACE categories
that were stated to show lower IT spendings. The firms where taken from the REACH
database, which holds corporate information on most Dutch firms and is accessible to students
via the university’s website. After applying the NACE categorization, the sample was further
downsized and optimized by applying a selection of filters to the sample:

Only firms with a size between 5 and 5000 employees

Only firms with an e-mail address

Only firms with a status flag set to normal (no bankruptcy, etc.)

4. Only firms that were economically active (no holding structures, etc.)

bl e

A first selection resulted in about 1550 firms. These where initially e-mailed to fill out the
survey. Because of a low response rate, 200 additional firms where selected from a NACE
sector with high IT spendings in order to get a sufficiently large dataset. The sample that was
ultimately used can be seen in table 5 and can be categorized as a convenience sample.

As can be seen in the table, originally (excluding the 200 additional firms) the
percentages where progressive when considering the IT intensity of the various categories.
After these additional firms were added, and which is currently shown, the percentage firms
in the sector with the highest IT expenditures were a bit higher (19,2%) than the part of the
sample with firms having medium IT expenditures (17,6%).

Secondly, the table shows the total number of firms that were ultimately used to
construct the sample (1827). Of these firms the e-mail addresses where acquired as they were
in the REACH database. After cleaning the list of obvious erroneous e-mail addresses, a total

of 1773 firms remained. This number was used for the survey.

“ NACE stands for Nomenclature Statistique des Activités Economiques, which is the official classification of
industries in the European Union.

65

© T. van der Luer 2005

Table 5 — Sample statistics

Number of firms
. . 0
Sector IT intensity Beofore : in final % of total
filters A D sample
p

Telecommunications 605 93 93
Network management, pc
security, automation High: 273 57 57
services, etc. more than 4,1% 19,2%
Financial institutions, of revenues
excluding mortgages and 172.702 1.056 200
retirement funds.
Production of machinery 493 201 201
Production of beverages 103 20 20
Utilities and energy trade Medium: 229 27 27
Production of optical 2,8% - 4,1% of 64 15 15 17,6%
instruments and the like revenues
Production of electrical 190 58 58
components
apparatus, and accessores | | L% 1087 896 896
Constructi,on finishing of Less than 2,8% 63,2%

. ’ of revenues 670 260 260
buildings
Total | | 177.266 | 2683 | 1827 | 100%

E-mails were sent over a period of 10 days. It appeared that answers came either very
quickly (within 24 hours) or not at all. No follow-up e-mails were sent since respondents
could not be identified. Of all e-mails sent, about 45 were returned undeliverable. In addition,
a number of firms returned an e-mail in which they gave a reason why they would, or could,
not fill out the questionnaire. Most cited reasons were that the respondent was either to busy,
or that all ICT related tasks had been outsourced, and that therefore nobody in the firm was
legible to complete the questionnaire.

In total 83 questionnaires were fully completed, which results in an effective response
rate of 4,78%. Not included into this response rate are respondents which indicated that they
did not have any knowledge on the concept of open source (18), or respondents that only
partly filled out the questionnaire (41). The respondents that only partly filled out the
questionnaire mostly abandoned the survey at the fourth page, which was the longest in the

whole survey. Response statistics can be found in table 6.

66

© T. van der Luer 2005

Table 6 — Response statistics
Item Number Percentage of total (1737)

Returned e-mails, undeliverable 45 2,6%
Returned e-mails of non-respondents
which indicated as a reason:

- Too busy / Not interested 14 0,8%

- Outsourced all IT, so can’t answer 9 0,5%

- All IT-issues are centralized /

No ICT manager in our firm 4 0.2%

- We don’t have this software 3 0,18%

- Firm does no longer exist 3 0,18%

- Questionnaire is too long 1 0,06%

- We are not commercial 1 0,06%
Total visits to survey website 255 14,7%
FuI_Iy cfompleted questionnaires, of 83 4,78%
which:

- Adopters 48 2,76%

- Non-Adopters 35 2,02%
‘Don’t know OSS’ answer (option B) 18 1,04%
Partly completed (not all pages) 41 2,36%

The response set could not be tested for nonresponse errors since respondent’
information was not known (anonymous) and not all e-mails were sent out at the same time,
but over a period of about 10 days. Therefore, late and early respondents could not be

compared.
Instrument validation

Reliability

Cronbach’s alpha was used to assess the reliability, or internal consistency, of the various
instruments. The general agreed upon lower limit for this measure is 0,60-0,70. The results
are shown in table 7. As can be seen, all values exceed the lower limit and thereby appear to

be reliable.

Table 7 — Instrument validation using Cronbach’s a
Instrument Cronbach a

Compatibility 0,861
Complexity (original 4 item construct) 0,615
Triability 0,903
Relative advantage (in total, 15 items) 0,806

- Switching costs separately 0,894

- Other items separately 0,768
Technology championship 0,909
Top management support 0,905
Task compatibility 0,759

67

© T. van der Luer 2005

Validity

In order to validate the constructs and the grouping of items factor analysis has been used.
Since the size of the dataset was 83, the cutoff point for factor loadings was set at 0.60. For
the constructs compatibility, triability, technology championship, top management support,
and task compatibility the factor loadings were sufficient and far above the cutoff point. These
constructs were also all related to a single identifiable factor. However, the factor analyses of
the constructs complexity and relative advantage showed less straightforward results.

Complexity was measured using a four-item construct. The factor analysis showed that
this construct resulted in two factors, each having two variables with high factor loadings.
Closer examination of the questionnaire showed that an error in the validation script in the
survey could have caused this error. Since the construct contained one ‘short’ scale that
should be sufficient (ease of use) and this construct was measured without errors, this
construct was diminished to the single variable, which consisted of that ‘short’ scale.

In chapter 3 it has already been stated that relative advantage often acts as a container
for factors which cannot be categorized under any of the other innovation characteristics. In
this case, the term relative advantage has been related to hypotheses on switching costs,
hardware cost savings, software cost savings, and various advantages caused by the free
availability of the source code. Although source code availability provides a common
denominator for many variables, each is linked to a different hypothesis and measured by
single item constructs. Only switching costs was a construct consisting of multiple items. This
is represented in the factor analysis on relative advantage with high factor scores for the
variables that are all related to switching costs. In addition, the reliability for the construct
switching costs has been seperately calculated, and proved sufficient (see table 7).

All constructs, which have proved valid and reliable, will be summated into single
values for further analysis. This will be done by taking the average of the values of the

variables in that construct.

68

© T. van der Luer 2005

Conclusion

This chapter summarized the research methodology for this thesis’ research. Although the
questionnaire was fairly long and required specific knowledge, 83 responses have been
gathered. Still, that is a fairly small dataset considering the number of hypotheses and will
lead to a cutback in the number of variables that can be tested. Unfortunately, from a practical
point of view it was not feasible to continue to expand the sample.

The majority of the used constructs in the questionnaire demonstrated to be valid and
reliable. Besides, the data cleaning and analysis done in this chapter brought to light several
issues in the survey which had not been detected before. This included using a wrong
construct (for complexity), and a construct item with wrong database scales. Though, these
issues could easily be accounted for and did not pose a problem or misinterpretation for the
respondents in any way. The dataset thus remains valid. This dataset will be used to undertake
statistical testing of the various hypotheses, of which the results will be shown in the next

chapter.

69

© T. van der Luer 2005

Chapter 5 — Results

After having laid the theoretical background, the construction of the hypotheses, and having
performed the research, this chapter consists of the results of the statistical analyses which
have been performed on the dataset. In this chapter, first a look at the descriptive statistics
concerning the responding firms, the independent, and dependent variables. Secondly, the
procedure and results of the multivariate logistic regression will be presented and commented.
Third, the various hypotheses will be considered. In the end, a short conclusion will be given.
The SPSS output for statistical tests that were performed in this chapter can be found in

appendix J.
Descriptive statistics

Independent variables

Respondent’s professions

Table 9 shows the respondent’s professions. The e-mails which where sent out for the survey
asked the reader to forward them to the ICT manager, or a person with a comparable function.
Although more than half of the respondents indicated that they indeed are the ICT manager, a
large part consisted of various management positions and technical (non-management)
positions, most of which were system administrators. The other group consisted of software

engineers, software architects, consultants, and clerks.

Table 9 — Respondent’s professions
Profession Frequency Percent
ICT manager 46 55,4
Management 19 22,9
System administrator 6 7,2
Other 12 14,5
Total 83 100

Sector IT intensity

Table 10 shows the frequencies of the IT intensity of the respondent’s sectors. As discussed in
chapter 4, the sample was composed of a relatively large number of firms with low IT
intensity to compensate for the expected lower levels of OS adoption and IT knowledge in
those sectors. As can be seen in the table, it appears that indeed high intensity firms had
higher response rates than low intensity firms. However, the distribution of the sample nicely
compensated for this, which results in a 50/50 distribution between low IT intensity firms and

high/medium IT intensity firms. On the other hand, a large number of respondents, almost 40

70

© T. van der Luer 2005

percent, opted for the ‘other’ category. This could be due to the fact that the descriptions used
for sectors where corresponding to the NACE descriptions*', which are rather broad.

Apparently many firms could not identify themselves with these descriptions.

Table 10 — Sector IT intensity
IT intensity Frequency Percent Original sample division
high 19 22,9 19,2
medium 6 7,2 17,6
low 25 30,1 63,2
other 33 39,8 0
total 83 100 100

Firm categories

Table 11 shows the categorization of the respondent’s organizations according to the
indicated gross revenue and number of employees, compared to official EU guidelines. As
can be seen most firms are small firms. The unknown category holds firms for which either

one of the two measures was not available or which did not deem trustworthy, for example

indications of more than 250 employees with a gross revenue of less than 2 million euro.

Table 11 — Firm categories

Category EIEES IEE O Frequency Percent
revenue (mio.) employees
Micro <2 <10 4 4,8
Small 2-10 10-50 33 39,8
Medium 10-50 50-250 16 19,3
Large > 50 > 250 10 12,0
Unknown unknown unknown 20 241

Software characteristics

One of the first question sets in the survey included a ranking of software characteristics.
Respondents could indicate how important they rated each of the listed items. The overall
results for adopters as well as non-adopters can be seen in table 12, which displays the results
of the independent sample t-test. When comparing the importance between adopters and non-
adopter groups the only significant difference at o 0,05 occurs with the importance of
continuity. Adopters rate continuity /ess important than non-adopters.

At the a0 0,10 level source code availability, suppliers and support, and reliability are
rated significantly different among adopters and non-adopters. As expected, adopters rate the
availability of source code more important than non-adopters. However, both group means
indicate that source code availability is not that important, with scores ranging between 2 (not

important) and 3 (neutral).

' See chapter 4 for an explanation on what NACE stands for and where it was taken from.

71

© T. van der Luer 2005

Availability of suppliers and support is rated higher by non-adopters as compared to
adopters. Again, this is as expected since open source software generally offers less
contractual security and support, and therefore should be less adopted by firms which require
legal liability and the like.

Both adopters and non-adopters of OSS indicate software reliability very important.

Non-adopters indicate a higher perceived importance of software reliability than adopters.

Table 12 — Ranking of software characteristics

Characteristic t Sig (2-tailed) | Adopter mean | N-Adopter mean | Std. Error Diff.
Continuity 3,684 0,000 4,15 4,63 0,125
Source code availability | -1,909 0,060 2,77 2,34 0,224
Suppliers and support 1,679 0,097 3,33 3,69 0,210
Reliability 1,629 0,107 4,48 4,66 0,109
Compatibility 1,546 0,126 4,19 4,43 0,156
Safety 1,493 0,139 417 4,37 0,137
Triability 1,257 0,212 3,77 4,00 0,182
Switching costs 1,190 0,237 3,92 4,11 0,166
Hardware costs 0,884 0,379 3,94 3,79 0,171
Complexity -0,275 0,784 3,56 3,561 0,176
License agreement 0,212 0,832 3,44 3,49 0,227

Dependent variable

The dependent variable is the adoption of open source software. As discussed in chapter 4,
respondents could indicate whether they used open source software or whether they did not,

and if so, which of the listed OSS they used. The results for OSS adoption can be seen in

figure 12.
Table 13 - Adopted OSS software
Software Frequency Percent (48 adopters)

@ ro Linux 33 68,8

0 yes Firefox 24 50,0

MySQL 21 43,8

Perl 20 42,0

PHP 19 39,6

Apache 18 37,5

Open source CMS 9 18,8

Squid 8 16,7

KDE 7 14,6

Open office 6 12,5

Unix 5 10,4

Postgresql 5 10,4

Gnome 5 10,4

Figure 12. OSS adoption rates. Other 23 47,9

Table 13 lists the OSS that the adopters indicated to use in descending order. As can
be seen the Linux operating system has the highest adoption percentage, followed by the
firefox browser and MySQL database management system. The ‘other’ category consisted of,
among others, Interbase / Firebird (3), Samba (2), and Python (2). It should be noted that this

list was not a required item in the questionnaire.

72

© T. van der Luer 2005

Multivariate analysis

In order to examine the variables that contribute to the OSS adoption decision, the technique
that deemed most appropriate was logistic regression analysis. This technique is somewhat
similar to multiple regression, and can be employed instead of discriminant analysis when it
involves a binary dependent variable. Logistic regression analysis provides for better results if
the underlying statistical assumptions are violated when compared to discriminant analysis
(Hair, Anderson, Tatham & Black, 1998). Before the logistic regression was performed, the

data was looked at again.

Data issues

A few things were done before the actual regression analysis was performed. First, summated
scales were created for the constructs consisting of multiple items. This involved
compatibility, triability, switching costs, technology championship, top management support,
and task compatibility.

Secondly, a categorical variable was constructed for the hypothesis concerning unix
shop’ or windows shop’ influence on OSS adoption. If a respondent indicated that the firm
used unix as a server operating system over the last five years, regardless of the percentage of
installations of unix, it was considered a unix shop (1). If, on the other hand, the respondent
indicated that it used the windows operating system over the last five years, it was considered
a windows shop (0). If a firm did not opt for one of these two operating systems, that is, it
only used Linux, ‘other’, or indicated not to have this figure, the case got a separate label (2).

Third, the construct concerning the perceived importance of open standards on OSS
adoption had missing data since the construct provided for a ‘don’t know’ answer. Since the
sample size was relatively small (83), it was not considered an option to delete these cases
from the sample. Nor were there any other cases available to replace the missing cases in the
sample. Therefore, the missing data were replaced by the mean value of that variable based on
all valid responses. However, this method does lead to some data distortion and lower
variance for the open standard variable.

The fourth issue involved the sample size. Logistic regression analysis requires a
sufficient sample size. The minimum size of twenty cases per group was met and the sizes of
each group were not significantly different. However, since the sample size was rather small
(<100) and the number of independent variables was rather large, this could result in

overfitting the model. A minimum suggested ratio is 5-to-1 as the number of cases per

73

© T. van der Luer 2005

independent variable, while in this case the ratio is 2-to-1. This posed a serious problem. In
order to take care of this issue the number of determinants had to be cut back.

The number of independent variables was decreased to achieve a 5-to-1 ratio. This
asked for a maximum of eight independent variables considering the smallest group having 38
cases. Forward and backward regression techniques could not be used to determine the
importance of the various variables since the data would be overfit. The selection of
independent variables was based on the following considerations:

a The source of the constructs:
o previous research vs. own constructs
o multiple item constructs vs. single item constructs
o The correlation between the independent variables
o The comments provided by the respondents in case of non-adoption
o The theoretical significance following from the discussion in chapter 3.

The variables and the reasoning behind their ultimate inclusion in the regression analysis can
be seen in table 14 on the following page. An alternative format is available in appendix H.
Although switching costs and supplier independence had similar ratings they were not
selected since they were expected to be sufficiently represented by respectively compatibility

and continuity. The results will now be discussed.

74

© T. van der Luer 2005

Table 14 — Overview of included hypotheses / selection procedure

Determinant Hypothesis Selected Reason
Multiple item construct
Task Hi: Perceived task compatibility is positively Yes No multicollinearity
compatibility associated with OSS adoption Often mentioned by
respondents
. . . . D " Not correlated
Skill o H2: Perce!ved sk!ll compatlblllty is positively Yes Often mentioned by
compatibility associated with OSS adoption
respondents
Hs: Perceived compatibility with key applications Multlple_ltem con_struct
o R . o, No multicollinearity
Compatibility and technological infrastructure is positively Yes .
. : . Often mentioned by
associated with OSS adoption
respondents
. Ha4: Perceived complexity is negatively associated
Complexity with OSS adoption No
- Hs: Perceived triability is positively associated Multiple item construct
VAl with OSS adoption Ve No multicollinearity
He: Perceived switching costs are negatively No
associated with OSS adoption
H7: Perceived hardware cost savings are No
Costs positively associated with OSS adoption
. . . . Multiple item construct
Hs: Perceived software cost savings are positively . A
. . . Yes Theoretical significance
associated with OSS adoption
from chapter 3
Hg: Perceived supplier independence is positively No
associated with OSS adoption
Hio: Perceived safety is positively associated with No Showed multicollinearity
OSS adoption with reliability, stability
Hi4: Perceived reliability is positively associated No Showed multicollinearity
with OSS adoption with stability, safety
Source code - — — - — -
availability Hi2: Perceived stability is positively associated No Showed multicollinearity
with OSS adoption with reliability, safety
. . Lo " : No multicollinearity
His: Pgrcelved contlr]ulty is positively associated Yes Theoretical significance
with OSS adoption
from chapter 3
Ha4: Perceived open standards compliance is No
positively associated with OSS adoption
Technology His: Perceived OSS championship is positively No Showed multicollinearity
championship associated with OSS adoption with top manag. support
. " No multicollinearity
Third party Hie: Percelyed thIde party suppo!'t is positively Yes Theoretical significance
support associated with OSS adoption
from chapter 3
To Multiple item construct
ma%a ement H.7: Perceived top management support is Yes No multicollinearity
9 positively associated with OSS adoption Often mentioned by
support
respondents
Hig: Abundance of slack resources is negatively No
associated with OSS adoption
IS slack — - - -
resources and Hig: Limited financial slack resources in
budget combination with enough slack in human in No
resources is positively associated with OSS
adoption.
IT in business Hzo: Perceived importance of IT to the business
strategy is positively associated with OSS No
strategy ;
adoption
Community size H21: Perceived community size is positively No
y associated with OSS adoption
Platform H22: A background as a ‘Unix shop’ is positively No
standards associated with OSS adoption

75

© T. van der Luer 2005

Results

To test the model the ENTER method was used and a cutting score of 0,57 in according to the

weighted group sizes. The result of the logistic regression is shown in table 15.

Table 15 — Results of logistic regression analysis

Factor B S.E. Walid df Sig. Exp(B)
Compatibility 3,093 1,062 8,475 1 0,004 22,040

Triability 1,497 0,688 4,729 1 0,030 4,466

Software costs 0,455 0,556 0,671 1 0,413 1,577

Continuity -0,569 0,548 1,077 1 0,299 0,566

Third party support 0,194 0,567 0,117 1 0,732 1,214

Top management support 0,025 0,572 0,002 1 0,965 1,026

Task compatibility 1,200 0,667 3,232 1 0,072 3,320

Skill compatibility -0,216 0,446 0,234 1 0,628 0,806

Constant| -17,317 4,566 14,381 1 0,000 0,000

Model fit

The ‘-2 log likelihood’ (-2LL) value represented by the model chi square indicates that the
model is significant. This means that the null hypothesis is rejected, which states that none of
the independents is linearly related to the log odds of the dependent variable. In addition, the
Hosmer and Lemeshow ‘Goodness of Fit’ test provides evidence that the model’s estimates fit
the data at an acceptable level. When considering the classification matrix the model displays
a correct percentage of 85,5 percent, which is over 25 percent more as compared to the base

model (57,8 percent). In addition, the model provides explanation for both groups separately.

Coefficients

As can been seen in table 15 three individual constructs are found to be significant, using the
Wald statistic and its p-value. In addition, these constructs also show significant correlations
to the dependent variable. Therefore, from the eight selected independent variables, the
variables compatibility, task compatibility, and triability show to be significantly different
from zero as opposed to the other five variables. Thus support was found for hypotheses 1, 3,

and 5. Support was not found for the other hypotheses that were included in the model.

Assumptions

As mentioned before, variables which showed signs of (multi-) collinearity were not included
in the model. The remaining independent variables did not show any correlation in the final
model. Secondly, the standardized residuals were tested for outliers at three standard

deviations. No outliers were found.

76

© T. van der Luer 2005

Alternative regression analyses

Two alternative regression analyses were performed for additional testing. First, top
management was swapped for technology championship since these two variables showed
significant correlation. Secondly, a variable software quality was constructed consisting of the

variables reliability, safety, and stability, since these three variables showed high correlations.

Enter technology championship for top management support

Swapping technology championship for top management support was done because these
factors showed high correlation in the pre-selection. The results of the altered regression
analysis show no difference as can be seen in table 16. The same factors seem relevant, with a
decreased significance of task compatibility. Technology championship, just like top
management support, does not seem relevant, although it has slightly higher significance than
top management support. The overall model —2LL therefore shows a slight improvement.
This supports the idea that these two constructs might resemble the same component,

something that will be further discussed in the following chapter.

Table 16 — Results of alternative logistic regression analysis 1:
Enter technology championship for top management support

Factor B S.E. Walid df Sig. Exp(B)
Compatibility | 2,915 1,086 7,210 1 ,007 18,445
Triability | 1,350 677 3,977 1 ,046 3,857
Software costs 476 574 ,690 1 ,406 1,610
Continuity | -,710 ,614 1,338 1 247 ,491
Third party support ,338 ,569 ,354 1 ,552 1,403
Technology championship ,622 ,511 1,479 1 ,224 1,862
Task compatibility | 1,094 ,674 2,633 1 ,105 2,985
Skill compatibility | -,171 ,446 ,147 1 ,702 ,843
Constant | -17,841 4,629 14,854 1 ,000 ,000

Since initially, compatibility also showed significant correlation to technology
championship, an additional test was done while removing compatibility. When both top
management and compatibility were removed, and technology championship entered the
equation, its coefficient did show to be significant at a level of o 0,05. However, the overall

model’s explanatory power decreased.

Adding a new component: Software quality

Software quality, representing perceptions on safety, reliability, and stability, was entered into
the equation by removing top management support. This was done since these variables (three
quality variables vs. top management support) showed the highest correlation among all
factors in the model. The results can be seen in table 17. Software quality led to a small

improvement in the model in terms of the —2LL value. In addition the percentage of correct

77

© T. van der Luer 2005

predictions went up to 86,7%, an improvement of 1%. At the individual level, software

quality does not seem to be relevant in the model with a p-value of 0,551.

Table 17 — Results of alternative logistic regression analysis 2:
Enter software quality for top management support

Factor B S.E. Walid df Sig. Exp(B)
Compatibility 3,084 1,062 8,431 1 ,004 21,853
Triability 1,468 ,659 4,959 1 ,026 4,339
Software costs ,493 ,566 , 759 1 ,384 1,638
Continuity -,600 ,558 1,155 1 ,282 ,549
Third party support ,210 ,561 ,140 1 , 708 1,234
Software quality 334 ,559 ,356 1 ,951 1,396
Task compatibility 1,127 674 2,800 1 ,094 3,086
Skill compatibility - 174 444 ,154 1 ,695 ,840
Constant| -18,061 4,783 14,257 1 ,000 ,000
Conclusion

This chapter presented the results of the statistical analyses. Besides the ‘common’ descriptive
statistics a logistic regression analysis was performed. The sample size in combination with
the large number of hypotheses asked for a rigorous reduction in the number of variables to be
included in the logistic regression analysis. Since statistical tests, i.e. backward and forward
logistic regression, could not be used to select for the most contributing factors, a combination
of quantitative and qualitative selection criteria was employed. Finally, a model of eight
variables was tested. Three variables showed to be significant: compatibility, task
compatibility, and triability. In addition, technology championship appeared to be somewhat
interchangeable with top management support. The next chapter will discuss the various

results that have been found.

78

© T. van der Luer 2005

Chapter 6 - Discussion of results

The final part of this thesis involves the discussion of the results, which followed from the
statistical analyses in chapter 5. In addition, the limitations of the research as well as some
implications for management and suggestions for future research in this area will be outlined.
First however, the results will be discussed for the various hypotheses which were presented
in chapter 3 and which were included in the logistic regression model. In addition, the
discussion will be related back to the classification scheme by Fichman (2000), which
allowed for the categorization of these hypotheses, and the framework for OS adoption by

Kwan & West (2003).

Discussion

In this thesis, twenty-two factors have been proposed which are likely to influence the
adoption of OSS by for-profit organizations. Due to the large number of hypothesized
relationships in combination with a relatively small sample, the number of factors that were
finally used to construct the research model had to be limited to eight. Of these eight, three
turned out to have a significant effect on the OSS adoption decision. These three factors
provide an answer to the problem statement that was stated in the introduction of this thesis:

Which factors influence the adoption of open source software
among for-profit firms?

All variables will now be considered and a clarification will be proposed for their relevance in

the model.

Relevant variables in the model

Three variables were found relevant to the adoption decision: compatibility, triability, and
task compatibility. Somewhat surprisingly, these three variables are not the same as the ones
that showed a high ranking in table 12. Apparently, when considering overall effects instead
of individual factors, the ranking does not hold. The three relevant factors will now be

discussed.

Compatibility

In chapter three it was proposed that compatibility in terms of technological infrastructure and
business critical, key applications, is positively related to OSS adoption (H,). It is reasoned
that key applications prohibit firms to switch to other software since such software is not

likely to be very portable in terms of operating system, API, and third party applications. In

79

© T. van der Luer 2005

addition, in the case of proprietary systems data is often saved in a proprietary data format
which is (more than often) not compatible with open standard formats which OSS adheres to.
This makes data integration and/or portability between proprietary (key) applications and OSS
more difficult. Finally, the organization’s strategy regarding the corporate IS/IT architecture
has to allow for OSS adoption, e.g. many firms standardize on a certain (proprietary)
technology, which makes a switch later on very difficult, if not impossible. This study
supports these claims.

Perceived compatibility showed a positive relation to OSS adoption. The construct
used for compatibility showed extremely significant in the model. In addition, comments

provided by respondents often related to this variable. These are discussed further on.

Triability

Perceived triability was hypothesized to have a positive relationship to OSS adoption (Hs).
Logically, the ability to test software can be expected to have a positive relationship to
adoption. In the case of OSS this relationship can be expected to be strong since OSS scores
high on triability. After all, OSS is always available without any limitations in terms of time,
costs, and features. The data confirmed this reasoning. Perceived triability is positively related

to OSS adoption.

Task compatibility

The extent to which required software functionalities can be matched by OSS is referred to as
task compatibility. In chapter three it was hypothesized that perceived task compatibility is
positively related to OSS adoption (H;). The results confirm this. Perceived task compatibility
is positively related to OSS adoption.

Irrelevant variables in the model

Software costs (Hs), continuity (H;3), third party support (Hjs), top management support
(Hi7), and skill compatibility (H,) did not appear to have a significant contribution to the
model. Thus, support was not found for these hypotheses. In addition, software quality
(representing Hyo, Hy1, and Hj,) was included in the model but did not show any effect on the

adoption decision. Other excluded hypotheses have not been tested at all.

Discussion of the model

The three relevant variables included in the model are basically all classic innovation

characteristics. Although task compatibility is not exactly identical to (technological)

80

© T. van der Luer 2005

compatibility, it is conceptually similar. Task compatibility can be seen as a part of
compatibility. When referring back to the matrix of Fichman (1992) as presented in chapter
two, classic innovation characteristics are part of all quadrants, including type I and type II
technologies. This is reasonable, since solely the fact that software is OS, cannot dictate
whether such software poses a high knowledge burden or network externalities in specific
contexts. Also, table 13 showed that simple OS technology can relatively fast gain popularity
despite negative network externalities, as seen by the second place of the Firefox internet
browser in the OSS adoption ranking™. In sum, classic innovation characteristics seem to be
most determining for OSS adoption given the eight variables fitted in the model.

A justification for the limited number of contributing variables can be sought in the
fact that this research only considers adoption as a binary decision (more on this in the
‘limitations’ section). Larsen, Holck & Pedersen (2004) pose that, especially for larger
organizations, a major barrier towards the adoption of OSS lies in the “enterprise
architecture, which constitute the strategic framework for all investments in IT” (Larsen,
Holck & Pedersen, 2004, p.13). This is identical to what is reasoned in this thesis by using the
concept of compatibility. However, most of the (known) respondents from this dataset are
small firms whereas the paper from Larsen, et al. relates this determinant primarily to
observations in large firms. In sum, when considering the adoption stage of OSS as a binary
decision, compatibility does show to be of major importance with the inclusion of
compatibility and task compatibility.

When considering the other relevant variable, triability, once more the question arises
why especially this variable is important over e.g. software cost or supplier independence.
Again, a possible explanation could be the absence of a measure of adoption. The triability
characteristics of OSS could be extremely important in the initial adoption stage, since the
opportunity costs of trying the software is, besides employee time, close to zero. In that way,
adoption can occur relatively unnoticed or even unauthorized. In later adoption stages, or in
functions that require more widespread organizational overhaul, these triability aspects might
be less important.

Besides the three relevant variables discussed, the five other variables included in the
model were not found to be of any significant importance. Both software costs and continuity,
as argued in chapter three, seemed the most important characteristics of OSS. The, often

discussed, source code availability was not expected to be essential, but rather the indirect

*2 The Firefox browser was first made available to the public in 2004.

81

© T. van der Luer 2005

effects it results in: supplier independence and lower software costs due to the lack of any
license fees.

Especially software costs are expected to be an important reason to adopt OSS for
small firms (Larsen, Holck & Pedersen, 2004), which make up the largest (known) portion of
the respondents. However, although software costs might pose significant cost savings, these
cost savings should be relatively small if an organization is incompatible with the
architecture, infrastructure, or skill set that OSS demands. In such cases, switching costs
might make savings on software licenses irrelevant. Thus once again, this factor might not be
relevant at the adoption stage. At least, as the model shows, less relevant than compatibility
issues, which, financially speaking, translate into switching costs.

The nonappearance of supplier independence, in the model represented by continuity,
is difficult to explain with the current dataset. Although table 12 showed significant
differences on this item between adopters and non-adopters, the model does not. One
hypothesized explanation might be that since most firms do not possess the skills to work
with the source code themselves, they still have to rely on outside parties for the service,
maintenance, etc., of the software. Thus, they remain dependent on certain companies,
whether it is a supplier or software company. This effect might even be strengthened by the
lack of support organizations for OSS as compared to proprietary software (although
decreasing). This could also be a possible cause to explain why third party support cannot be
used to distinguish between adopters and non-adopters.

Overall, software quality issues, direct as well as indirect, and free availability do not
seem important at the adoption stage. However, this result might also be due to the research
target population, which are for-profit organizations. The much debated software quality
aspect, the absence of license fees, and perhaps other determinants, might be more essential at
the level of individual adoption. At that level, the zero price and free modification are
expected to be more important factors then the three found in this thesis’ model.

Top management support is the fourth variable not included. This could be due to the
fact that top management support is especially needed for the organizational introduction of
OSS, which again, might not be the adoption stage among adopters in the dataset. As long as
OSS is used for specialized tasks like web server or firewall tasks, it is not expected to
involve top management and in that way influence the adoption decision.

The exclusion of skill compatibility, on the other hand, seems harder to explain.
Apparently, the skills required to operate and maintain OSS are not significantly different

then for proprietary software. This statement more or less stands or falls with the introduction

82

© T. van der Luer 2005

of the Linux operating system at the desktop. As long as this change is necessary, the required
skill set for common business users is expected to be rather small. Few cases are known in
literature where firms fully switch to a Linux environment for the desktop.

When referring back to figure 10, the categorization scheme of Fichman (2000), it can
be seen that the three relevant variables all fall in the ‘technology-organization combination’
category. In addition, the adoption framework put forward by Kwan & West (2003), as
presented in figure 9, shows the expected adoption process. The factors that have been found
significant in this thesis cannot clearly be mapped to single factors in this model. For
example, compatibility would likely be an issue when comparing the OSS to the application
context in terms of already used products and the associated risk of introducing another
technology, possibly requiring the adoption of new standards or protocols. On the other hand,
compatibility also regards the key applications of the firm, which are likely to be very related
to the industry the firm operates in. Triability could possibly be represented by OS attitudes as
well as application context, where OSS would decrease the adoption risk since it could be

thoroughly tested without any side effects.

Implications for management

Besides the general conclusions that can be drawn from this paper, this research offered some
insights into general considerations among firms in adopting OSS that might be relevant to
the managers. Besides the quantitative data gathered, some qualitative data has been gathered,
consisting mainly of comments provided by non-adopters. Table 16 shows reactions by

respondents to the question why they did not adopt OSS.

Table 18 — Reasons for non-adoption of OSS
Reason Count

Hard support needed (legal, contracts, etc) 10
No need yet for such software / Redundant
Required skills are not available
Standardized on MS products
Key applications require MS products
Centralized IT management or outsourced IT
Limited IT personnel
Too expensive to maintain
Literally: compatibility
Software quality doubtful (stability, reliability, etc)
Is not part of corporate IS/IT strategy

= (ININ|INN[Wwo|od(N |0

As can be seen in table 18, most arguments for non-adoption are related to lock-in to

Microsoft products, the lack of skills to employ/deploy such software, the fact that such

&3

© T. van der Luer 2005

software is not required and, above all, the perceived lack of support in terms of ‘hard’
contracts and legal guarantees.

The argument that there is no need for OSS is unexpected. Although OSS is relatively
underrepresented in certain types of software, the fact that it is free would make it more
favorite for adoption. Again, this could be due to the before mentioned argument of
compatibility with IT architecture. Organizations might focus on software which offer a
complete solution for many tasks, although OSS might be better for certain individual tasks.

Most implications from this table are for companies which offer OSS or related
products or services. Hard support is still asked for as well as skills to implement and help

maintain OSS.

Limitations

Results and conclusions from this thesis should be read with some caution. First, although
theoretically underpinned, the large number of hypotheses has led to some limitations. From a
practical point of view, the number of variables to be measured and the resulting length of the
survey could be seen as a reason for the low response rate. This has limited the number of
hypotheses that could be tested since the sample size, in relation to the number of variables,
was rather small for the technique used, logistic regression. In addition, the Wald test used to
estimate the importance of individual coefficients is expected to be less reliable at smaller
sample sizes.

Secondly, the research involved a wide array of issues concerning the ICT function
like technical considerations, software purchasing issues, and open standards. Although ICT
managers were the target group of the survey, it cannot be determined to what extent each
individual had the required knowledge of all aspects. This is certainly the case for non-
adopters. These respondents might be less knowledgeable on OSS or open standards. On the
other hand, respondents from other business functions could be even less apt to fill out the
questionnaire, and the questionnaire was set up in such a way as to sort out unknowledgeable
respondents as much as possible.

Thirdly, the questionnaire does not consider the various levels of adoption that could
exist. Since this thesis has limited itself to adoption vs. non-adoption this is not an issue, but
differentiating between various adoption levels, as pointed out by Kwon & Zmud (1987),

could prove important in recognizing more factors of differing importance at different stages.

84

© T. van der Luer 2005

Suggestions for future research

This section will suggest some topics that are interesting for further research. As already
mentioned in previous chapters, the supply of OSS, e.g. developer’s motivation and project
organization, has gained relatively much attention. Less is known about the demand side of
OSS. This thesis has tried to consider many aspects on the demand side, some of which might
be interesting to consider separately, especially those which were deleted because of
overfitting the model. Some other factors which were left out before hand could also seem
important, above all the influence of the type of license agreements on OSS adoption levels.

A related area of interest involves researching additional constructs. Of the twenty-two
variables used, the factor analysis showed only eight components. This number could even be
reduced to six when the summated scale software quality was used. This is unexpected, since
(especially) the constructs taken from previous research should only load on single
components. When regarding the components, classic innovation characteristics seem to load
on one factor. In addition, IS/IT budget and human resources, and importance of IT to the
business strategy load on one component as well as top management support and technology
championship. Most of the components seem to represent identifiable concepts. Although
more detail is beyond the scope of this text, researching these effects might provide for better
results.

Third, the foundation of this research has focused on Rogers’ (1995) concept of
diffusion of innovations. Other models, which focus especially on the adoption of information
systems, i.e. software, like the technology acceptance model by Davis (1989), might provide
additional insights in OSS adoption determinants. In addition, since a number of non-adopters
indicated not to use OSS because they were satisfied with existing software, a need-pull
model might be relevant. Need-pull factors relate to the satisfaction of organizations with
their current systems to adoption of new systems, as described by Chau & Tam (2000).

Fourth, one could look beyond the adoption decision. As discussed, adoption stands
far apart from infusion, i.e. full integration of the technology. This research only considers
what factors made a firm to adopt or not adopt OSS. Relatively little is known on the dynamic
context, i.e. the decisions that lead to OSS adoption and the extent of OSS adoption and
infusion. More detailed research involving case studies could be used to refine and test the
model and the importance of factors in such situations. Also, one could focus on the adoption
level of a few OS programs and consider the importance of various factors at the various

stages by means of a discriminant analysis.

85

© T. van der Luer 2005

The fifth recommendation concerns the other categories of the Fichman classification
scheme that have not been included in this thesis. This research has not considered the
category ‘technology & diffusion environment’, which involves aspects such as propagating

institutions, which have been shortly discussed in chapter 2.

86

© T. van der Luer 2005

Bibliography

a

Agrain, P.(2002). 4 framework for understanding the impact of GPL copylefting vs.
non copylefting licenses. MIT working paper. Retrieved February 5, 2005, from the
World Wide Web: http://opensource.mit.edu/papers/aigrain2.pdf

Alavi, M., & Leidner, D.E. (2001). Knowledge management and knowledge
management systems: Conceptual foundations and research issues. MIS Quarterly, 25
(1), 107-136.

Berlecon. (2002a). FLOSS final report - part 1: free/libre and open source software:
survey and study: Use of open source software in firms and public institutions,
evidence from Germany, Sweden and UK. Berlin: Berlecon Research GmbH.

Berlecon. (2002¢). FLOSS final report - part 3: free/libre and open source software:
survey and study. Basics of open source software markets and business models.
Berlin: Berlecon Research GmbH.

Blecherman, B. (1999). The cathedral versus the bazaar (With apologies to Eric S.
Raymond): An economic and strategic look at open-source software. Retrieved
December 16, 2004, from the World Wide Web: http://www.ite.poly.edu/htmls/
chapel printable.htm

Bonaccorsi, A., & Rossi, C. (2003a). Licensing schemes in the production and
distribution of open source software. An emperical investigation. Pisa, Italy: Sant’
Anna School of Advanced Studies, Institute for Informatics and Telematics.

Bonaccorsi, A., & Rossi, C. (2003b). Why open source software can succeed.
Research Policy, 32 (7), 1243-1258.

Bonaccorsi, A., Giannangeli, S., & Rossi, C. (2004). Entry strategies under dominant
standards - Hybrid business models in the open source software industry. Retrieved
January 15, 2005, from the World Wide Web: http://opensource.mit.edu/papers/
bonnacorsirossigiannangeli.pdf

Brynjolfsson, E., & Kemerer, C.F. (1997). Network externalities in microcomputer
software: An econometric analysis of the spreadsheet market. Management Science,
42 (12), 1627-1647.

Casanova, C. (2003). Open source risk mitigation process. Bethesda, USA: The SANS
Institute. Retrieved February 15, 2005 from the World Wide Web:
http://www.sans.org/rr/whitepapers/bestprac/1174.php

Chau, P.Y.K, & Tam, K.Y. (1997). Factors affecting the adoption of open systems: An
exploratory study. MIS Quarterly, 21 (1), 1-24.

Chau, P.Y.K., & Tam, K.Y. (2000). Organizational adoption of open systems: a
‘technology-push, need-pull’ perspective. Information and Management, 37, 229-239.

87

© T. van der Luer 2005

o Churchill, G.A. (2001). Basic Marketing Research (4th ed.). Dryden: The Dryden
Press.

o Commission of European Community. (2002). Aanbeveling van de commissie van ...
tot wijziging van Aanbeveling 96/280/EG betreffende de definitie van kleine en
middelgrote ondernemingen [Recommendation of the Commission of .. to the
changing of Recommendation 96/280/EG concerning the definition of small and
medium-sized enterprises]. Retrieved March 31, 2005, from the World Wide Web:
http://europa.eu.int/comm/enterprise/consultations/sme_definition/consultation2/

153 sme definition 25 6 2002 ppl 10 nlpdf

a Cooper, R.B., & Zmud, R.W. (1990). Information technology implementation
research: A technology diffusion research. Management Science, 36 (2), 123-139.

o Coppola, C., & Neelley, E. (2004). Open source — opens learning: Why open source
makes sense for education. Phoenix: The r-smart group. Retrieved February 22, 2005,
from the World Wide Web: http://www.rsmart.com/assets/
OpenSourceOpensLearningJuly2004.pdf

a Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance
of information technology. Behaviour & Information Technology, 18 (4), 319-339.

a Dwan, B. (2004). Open source vs. closed. Network Security, 2004 (5), 11-13.

o e-Cology Corporation. (2003). Open source software in Canada: A collaborative fact
finding study. Retrieved February 21, 2005, from the World Wide Web:
http://www.e-cology.ca/canfloss/report/

o Fichman, R.G. (2000). The diffusion and assimilation of information technology
innovations. In R.-W. Zmud (Ed.), Framing the domains of IT management: Projecting
the future through the past (Chapter 7). Cincinnati, OH, Pinnaflex Educational
Resources, Inc.

o Fichman, R.G. (1992). Information technology diffusion: A review of empirical
research. Proceedings of the thirtheenth international conference of information
systems, pp. 195-206. Dallas.

o Fitzgerald, B., & Kenny, T. (2003). Open source software can improve the health of
the bank balance — The Beaumont Hospital experience. University of Limerick,
Ireland: Fitzgerald, B., & Kenny, T. Retrieved March 15, 2005, from the World Wide
Web: http://www.netproject.com/docs/Beaumont.pdf

o Frels, J.K., Shervani, T., & Srivastava, R.K. (2003). The integrated networks model:
explaining resource allocations in network markets. Journal of Marketing, 67
(January), 29-45.

o Fugetta, A. (2003). Open source software — an evaluation. The journal of systems and
software, 66, 77-90.

88

© T. van der Luer 2005

0 Ghosh, R.A. (1998). Cooking pot markets: an economic model for the trade in free
goods and services on the internet. Retrieved December 15, 2004, from the World
Wide Web: http://dxm.org/fm/cookingpot/

o Ghosh, R.A., & Glott, R. (2003). Open standards and open source software in The
Netherlands: A quantitative study on attitudes and usage in Dutch authorities.
Maastricht: MERIT, Universiteit Maastricht. Retrieved January 12, 2005, from the
World Wide Web: http://www.for-the-people.org/blog/entries/entry.2003-12-16.0227

o Hair, J.F., Jr., Anderson, R.E., Tatham, R.L., & Black, W.C. (1998). Multivariate
Data Analysis (5th ed.). Upper Saddle River: Prentice Hall.

o Hamel, G., & Prahalad, C.K. (1990). The core competence of the corporation.
Harvard Business Review, pp. 79-91.

o Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers in
open source projects: an internet-based survey of contributors to the Linux kernel.
Research Policy 32, 1159-1177.

a Johnson, K. (2001). A descriptive process model for open-source software
development. Calgary, Alberta, Canada: University of Calgary, Department of
Computer Science. Retrieved November 20, 2004, from the World Wide Web:
http://sern.ucalgary.ca/students/theses/KimJohnson/kjohnsonMSc.pdf

o Knubben, B.S.J. (2004). Investeren in openheid: Een analyse van TCO-onderzoeken
betreffende open source software [Investing in openness: An analysis of TCO-research
concerning open source software]. Den Haag: ICTU, Programma OSOSS.

o Krogh, G., von, & Hippel, G. von. (2003). Special issue on open source software
development. Research Policy, 32 (7), 1149-1157.

o Kwan, SK., & West, J. (2005). A conceptual model for enterprise adoption of open
source software. In S. Bolin (Ed.), The standards edge: Open season (pp. 274-301).
Ann Harbor, Michigan: Sheridan Books.

o Kwon, T.H., & Zmud, R.W. (1987). Unifying the fragmented streams of information
systems implementation research. In: R. Boland & R. Hirschheim (Eds.), Critical
issues in information systems research. Chichester, England: John Wiley & Sons Ltd.

o Larsen, M.H., Holck, J., & Pedersen, M.K. (2004). The challenges of open source
software in IT adoption: Enterprise architecture versus total cost of ownership.
Copenhagen, Denmark: Copenhagen Business School, Department of Informatics.
Retrieved Mai 20, 2005, from the World Wide Web:
http://w3.msi.vxu.se/users/per/IRIS27/
iris27-1135.pdf

o Lerner, J., & Tirole, J. (2001). The open source movement: key research questions.
European Economic Review, 45, 819-826.

&9

© T. van der Luer 2005

o Lerner, J., & Tirole, J. (2002). Some simple economics of open source. Journal of
industrial economics, 50 (2), 297-234.

o Levy, S. (2000). Hackers: heroes of the computer revolution. New York: Penguin.

o Michalec, G. (2002). Free software: history, perspectives, and implications. Oxford,
Ohio, United States: Miami University, School of Interdisciplinary Studies. Retrieved
January 20, 2005, from the World Wide Web: http://greg.primate.net/sp/thesis.pdf

o Moore, G.C., & Benbasat, 1. (1991). Development of an instrument to measure the
perceptions of adopting an information technology innovation. Information Systems
Research, 2 (3), 173-191.

o Mustonen, M. (2003). Copyleft — the economics of Linux and other open source
software. Information Economics and Policy, 15, 99-121.

o Newell, S., Swan, J.A., & Galliers, R.D. (2000). A knowledge focused perspective on
the diffusion and adoption of complex information technologies: the BPR example.
Information Systems Journal, pp. 239-259.

o Nichols, D.M., & Twidale, M.B. (2003). The usability of open source software. First
Monday, 8 (1). Retrieved January 20, 2005, from the World Wide Web:
http://www.firstmonday.org/issues/issue8_1/nichols/

o Nuvolari, N. (2003). Open source software development: some historical perspectives.
ECIS working papers, Eindhoven Centre for Innovation Studies, Faculty of
Technology Management. Retrieved January 20, 2005, from the World Wide Web:
http://opensource.mit.edu/papers/nuvolari.pdf

o Oksanen, V., & Vilimiki, M. (2002). Evaluation of open source licensing models for
a company developing mass market software. Retrieved February 20, 2005, from the
World Wide Web: http://www.hiit.fi/de/valimaki oksanen lawtech 2002.pdf

o Orlikowski, W.J. (1995). Evolving with notes: Organizational change around
groupware technology. Cambridge, USA: W.J. Orlikowski. Retrieved February 25,
2005 from the World Wide Web: http://ccs.mit.edu/papers/CCSWP186.html#org

o Overby, E.M., Bharadwaj, A.S., & Bharadwaj, S.G. (2004). An investigation of firm-
level open source software adoption: theoretical and practical implications. Atlanta:
Overby, E.M., Bharadwaj, A.S., & Bharadwaj, S.G. Retrieved December 20, 2004,
from the World Wide Web: http://userwww.service.emory.edu/~eoverby/files/
overby open source adoption_study.pdf

o Pijpers, A.G.M, Montfort, K., van, & Heemstra, F.J. (2002). Acceptatie van ICT:
Theorie en een veldonderzoek onder topmanagers [Adoption of ICT: Theory and
fieldresearch among topmanagers]. Bedrijfskunde, 74 (4), 76-84.

o Premkumar, G. (2003). A meta-analysis of research on information technology

implementation in small business. Journal of Organizational Computing and
Electronic Commerce, 13 (2), 91-121.

90

© T. van der Luer 2005

o Rai, A., & Patnayakuni, R. (1996). A structural model for CASE adoption behavior.
Journal of Management Information Systems, 13 (2), 205-234.

o Rajagopal, P. (2002). An innovation-diffusion view of implementation of enterprise
resource planning systems and development of a research model. /nformation &
Management, 40 (2), 87-114.

o Rathnam, R.G., Johnson, J., & Joseph Wen, H. (2004). Alignment of business strategy
and IT strategy: A case study of a Fortune 50 financial services company. Journal of
Computer Information Systems, (XLV, 2, 1).

o Raymond, E. S. (1999). The cathedral & the bazaar. Musings on Linux and open
source by an accidental revolutionary. Sebastopol, CA: O’Reilly & Associates, Inc.

o Robertson, T.S., & Gatignon, H. (1986). Competite effects on technology diffusion.
Journal of Marketing, 50 (3), 1-12.

o Rogers, E. M. (1983, 1995). Diffusion of innovations (3", 4™ ed.). New York: The
Free Press.

o Rogers, EM., & Shoemaker, F.F. (1971). Communication of innovations: A cross-
cultural approach. New York: The Free Press.

o Shapiro, C., & Varian, H.R. (1999). Information Rules. Boston: Harvard Business
School Press.

o Stewart, K.J., Ammeter, A.P., & Maruping, L.M. (2005). A preliminary analysis of the
influences of licensing and organizational sponsorship on success in open source
projects. Proceedings of the 38th Hawaii International Conference on System
Sciences, January 2005. Retrieved February 20, 2005, from the World Wide Web:
http://csdl.computer.org/comp/proceedings/hicss/2005/2268/07/22680197c.pdf

o Swanson, E.B. (1994). Information systems innovation among organizations.
Management Science, 40 (9), 1069-1092.

o The Dravis Group. (2003). Open source software: Case studies examining its use. San
Fransisco: The Dravis Group. Retrieved March 20, 2005, from the World Wide Web:
http://www.pgsql.com/pdf/OpenSourceSoftware Dravis .pdf

o Tornatzky, L.G., & Klein, K.J. (1982). Innovation characteristics and innovation
adoption implementation: A meta-analysis of findings. /[EEFE transactions on

engineering management, (EM-29-1), 28-45.

o Tornatzky, L.G., & Fleischer, M. (1990). The process of technological innovation.
Toronto: Lexington Books.

o Turban, E., McLean, E., & Wheterbe, E. (1999). Information technology for
management (2™ ed.). New York: John Wiley & Sons, Inc.

91

© T. van der Luer 2005

o Ward, J., & Peppard, J. (2002). Strategic planning for information systems (3rd ed.).
Chichester: John Wiley & Sons, Ltd.

o Watson, B. (2003). No title. Retrieved December 15, 2004, from the World Wide
Web: http://expertanswercenter.techtarget.com/eac/knowledgebase Answer/
0,295199,s1d63 2ci983994,00.html

a Wayner, P. (2000). Free for all: how linux and the free software development
undercut the high-tech titans. New York: HarperBusiness.

o West, J. (2003). How open is open enough? Melding proprietary and open source
platform strategies. Research Policy, 32 (7), 1259-1285.

o West, J., & Dedrick, J. (2003). Adoption of open source platforms: An exploratory
study. Presented at HBS — MIT Sloan free/open source software conference — New
models of software development. Retrieved December 5, 2004, from the World Wide
Web: http://opensource.mit.edu/papers/west.pdf

o Whitten, J. L., Bentley, L.D., & Dittman, K.C. (2001). Systems analysis and design
methods (5" ed.). New York: McGraw-Hill.

o Zmud, R.W. (1982). Diffusion of modern software practices: Influence of
centralization and formalization. Management Science, 28 (12), 1421-1431.

o Zmud, RW., & Apple, L.E. (1992). Measuring information technology infusion.
Journal of Product Innovation Management, 9 (2), 148-155.

92

© T. van der Luer 2005

Appendices

Appendix A: Open source timeline

The open source timeline has been composed from various internet sources.

Table 17 - Open source timeline

When? Event

1971 Richard Stallman begins his career at MIT in a group that uses only free software

1978 Donald Knuth of Stanford University begins working on the Tex system, and distributes it
as free software.

1979 Eric Allman writes a precursor to Sendmail, called Delivermail. It is shipped with 4.0 and
4.1 BSD Unix.

1980 Early era of nonproprietary software for academic use is largely over. Most software has
become proprietary; that is, it is privately owned and its source code is not publicly
available.

1983 - Richard Stallman writes the GNU Manifesto, in which he calls for a return to publicly

shareable software and source code.

- GNU Project begins. Developers begin creating a wide range of generally Unix-like
tools and software such as compilers. The kernel is not covered by these early
efforts.

TCP/IP protocols (which are open standards) adopted by the U.S. military.

1984 AT&T began enforcing its intellectual property rights on Unix

1985 Richard M. Stallman starts the Free Software Foundation, a nonprofit organization to
manage and support the development of free software.

1986 Larry Wall develops the Perl programming language.

1988 Richard M. Stallman and the FSF created the GNU General Public License (GPL).

1989 Cygnus, the first company to identify business opportunities in free software, is founded.

1990 Python programming language invented by Guido Van Rossum at CWI in Amsterdam.

1991 Linus Torvalds creates version 0.01 of Linux in August. The first "official" version, version
0.02, appears in October

1993 FreeBSD project begins; first CD-ROM and Web distribution of FreeBSD 1.0.

1994 - Official version of Linux 1.0 released
- Marc Ewing begins the Red Hat Linux distribution. Like the Debian distribution, it is

intended to improve on the then-dominant Softlanding Linux System (SLS)
distribution.

1995 - Apache webserver 1.0 released
- Debian Social Contract

1997 - Eric S. Raymond wrote an analysis of free/open source software development entitled

The Cathedral and the Bazaar.

- Linux receives numerous industry awards, including InfoWorld's

- Network Operating System Award

- The Open Source Initiative was founded

1998 - Apache and derivatives now running 50 per cent of all Web sites.

- Netscape announces freeware strategy for its browser; launches Mozilla.org to
promote freeing of its source code.

- Corel Corp. announces supports for Linux and plans to port its software to an open
source OS platform.

- IBM Corp. announces support for Apache.

1999 - IBM, Compagq Corp., Dell Computer and Hewlett-Packard start selling systems

designed for use with Linux OS.

- Linux 2.2.0 is released, promising refinements that will make it easier for businesses
to adopt it as their OS.

- VA Linux Systems sets new record for the largest first-day gain of any initial public
offering, capping a year of huge gains for Linux- related stocks.

- Red Hat software, a popular commercial Linux distributor, goes public raising over 68
million dollars in venture capital.

93

© T. van der Luer 2005

2000

Core Corp.'s stock soars after announcing a version of its Linux- based software will
allow users to run Windows applications over any connection.

IBM announced that it would dedicate nearly $1 billion to open source development,
advertising, and services

Sun Microsystems open sources StarOffice, its productivity application suite.

94

© T. van der Luer 2005

Appendix B: The OSD License

Retrieved at http://www.opensource.org/docs/definition_plain.php on 14 March, 2005.

Introduction

Open source doesn't just mean access to the source code. The distribution terms of open-

source software must comply with the following criteria:
1. Free Redistribution

The license shall not restrict any party from selling or giving away the software as a
component of an aggregate software distribution containing programs from several different

sources. The license shall not require a royalty or other fee for such sale.

2. Source Code

The program must include source code, and must allow distribution in source code as well as
compiled form. Where some form of a product is not distributed with source code, there must
be a well-publicized means of obtaining the source code for no more than a reasonable
reproduction cost preferably, downloading via the Internet without charge. The source code
must be the preferred form in which a programmer would modify the program. Deliberately
obfuscated source code is not allowed. Intermediate forms such as the output of a

preprocessor or translator are not allowed.
3. Derived Works

The license must allow modifications and derived works, and must allow them to be

distributed under the same terms as the license of the original software.
4. Integrity of The Author's Source Code

The license may restrict source-code from being distributed in modified form only if the
license allows the distribution of "patch files" with the source code for the purpose of
modifying the program at build time. The license must explicitly permit distribution of
software built from modified source code. The license may require derived works to carry a

different name or version number from the original software.

95

© T. van der Luer 2005

5. No Discrimination Against Persons or Groups
The license must not discriminate against any person or group of persons.
6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a specific field of
endeavor. For example, it may not restrict the program from being used in a business, or from

being used for genetic research.
7. Distribution of License

The rights attached to the program must apply to all to whom the program is redistributed

without the need for execution of an additional license by those parties.
8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program's being part of a particular
software distribution. If the program is extracted from that distribution and used or distributed
within the terms of the program's license, all parties to whom the program is redistributed
should have the same rights as those that are granted in conjunction with the original software

distribution.
9. License Must Not Restrict Other Software

The license must not place restrictions on other software that is distributed along with the
licensed software. For example, the license must not insist that all other programs distributed

on the same medium must be open-source software.
10. License Must Be Technology-Neutral

No provision of the license may be predicated on any individual technology or style of

interface.

96

© T. van der Luer 2005

Appendix C: Overview of software licenses

Table 18 - Overview of software licenses

Derived
No Source work Linking
s Available PR code | Source code | must be with
oftware Distribution | usage Yot T A
license at no allowed restric- fre_ely modification freg proprietary
cost ti availabl allowed again software
ions d
e (viral allowed
aspect)
Proprietary
Shareware X X
Freeware X X X
Public
domain X X X X X X
(USA)
GPL
(GNU GPL) X X X X X X
LPGL X X X X X X X
MPL X X X X X X X
BSD X X X X X X

97

© T. van der Luer 2005

Appendix D: Motivations of open source developers

Table 19 - Why do programmers contribute? Motivational factors.

Factor Explanation Mentioned in Motivation
Altruism Raymond (1999)
Bonaccorsi & Rossi (2003b)
Intrinsic utility ggcr::ganriltsig: ;%jcrﬁggt];gedilrﬁg\éery Bonaccorsi & Rossi (2003b)
communit Lerner & Tirole (2002)
! y oo Lerner & Tirole (2000) o
Private reputations Intrinsic
Art form Artistic §at|sfact|on in solving complex Bonaccorsi & Rossi (2003b) motivation
computing problems
Personal learnin Rediscovering the pleasure of
P rmning programming, often lost in Bonaccorsi & Rossi (2003b)
ersonal enjoyment . . .)
- commercial settings due to deadlines | Hippel & Krogh (2003)
Pleasure of creativity
and market laws
Signaling of quality of Making your .Sk'”S I_mown to ... | Lerner & Tirole (2000)
. commercial firms via an OS project in . -
human capital : Bonaccorsi & Rossi (2003b)
hope of e.g. a job.
Self production Provide for a program that does not Lerner & Tirole (2000) Extrinsic
appear to exist to fulfill a need or Bonaccorsi & Rossi (2003b) rewards

solve a problem

Financial
compensation

Some commercial firms contribute
programmers to a project which are
on the firm’s payroll.

Lerner & Tirole (2000)
Lakhani, et al. (2002)

98

© T. van der Luer 2005

Appendix E: Changes in the strategic value of applications

Strategic upshift

Key
operatio-

nal
Strategic
downshift
High
potential

Deployment

Figure 13. Shifts in strategic importance of applications in the applications portfolio

99

© T. van der Luer 2005

Appendix F: Sample of successful open source software

Please note that this list is not complete nor aims to be complete. It only provides examples of

some successful open source software projects.

Table 20 - Sample of successful open source software

Name Type of software / Area License Link
HTTP (web) server, one of the most
The Apache Software .
Apache popular and successful open source License http://www.apache.org/
projects.
UML tool, used to model software
ArgoUML requirements in the Unified Modeling BSD license http://www.argouml.org
Language.
CVS is a version control system, http://www.gnu.org/
CVSs : GPL
essential to develop software. software/cvs/
BIND is an implementation of the BSD stvle license
. Domain Name System (DNS) protocols. y http://www.isc.org/
Bind . Free to use but - -
Used to support a major part of the . index.pl?/sw/bind/
. ; restricted
internet infrastructure.
Editor. The original free software project http://www.gnu.org/
Emacs by Richard Stallmann. GPL software/emacs/
Firebird Relational database system IDPL (A(.:Iap.ted Mozilla htp://firebird.
Public License) sourceforge.net/
Firefox Browser based on Mozilla Mozilla Public License http://www.firefox.com/
Free BSD FreeBSD is a UNIX operating system. BSD type http://www.freebsd.org/
BSD style license
Freetype A free a nd por_table TrueType font Free to use but http://www.freetype.org
rendering engine. A
restricted
GIMP SlMP is the GNU Image Manipulation GPL http://www.gimp.org/
rogram.
GNOME is the GNU Network Object
Gnome qu(_el Environment. This pr_OJect is GPL http:/AWWW.gnome.orq
building a complete, user-friendly
desktop.
Interbase Cross-platform embedded database Interb_ase Public hitp.// wva.borland.com/
License interbase/
KDE KDE is a poweriul graphical desktop GPL http://www.kde.org
environment for Unix workstations.
Linux is a clone of the operating system
Linux Unix, written from scratch by Linus GPL http://www.linux.org
Torvalds.
Mambo Content Management System GPL http://www.m;Tboserver.co
. Dual license: . -
MySQL MySQL is a SQL database server Commercial and GPL http://www.mysql.org/
The OpenBSD project produces a
Open BSD | FREE, multi-platform UNIX-like BSD type http://www.openbsd.org/
operating system.
An international office suite that will run Dual licensing:
Openoffice | on all major platforms (also LGPL http://www.openoffice.org/
commercialized by Sun: StartOffice) SISSL (Sun license)
PHP is a widely-used general-purpose
scripting language that is especially PHP license .
PHP suited for Web development and can be (BSD variant) hitp://www.php.net
embedded into HTML.
Perl Perl is a high-level, general-purpose Artistic and GPL http://www.perl.com
programming language.
PostgreSQL is a robust, next-generation,
Object-Relational DBMS (ORDBMS), i
PostgreSQL derived from the Berkeley Postgres BSD Type http://www.postgresql.org
database management system.
Python Python is an interpreted, interactive, BSD type http://www.python.org

object-oriented programming language.

100

© T. van der Luer 2005

Samba

Samba is an Open Source/Free
Software suite that has provided file and
print services to all manner of SMB/CIFS
clients.

GPL

http://www.samba.org

Sendmail

Sendmail is a Mail Transfer Agent, which
is the program that moves mail from one
machine to another.

OpenSource

http://www.sendmail.org/

Squid

Squid is a high-performance proxy
caching server for web clients.

GPL

http://www.squid-cache.org/

Zope

Zope is a free, Open Source web
application platform used for building
high-performance, dynamic web sites.

OpenSource

http://www.zope.org

101

© T. van der Luer 2005

Appendix G : The questionnaire

Below is the questionnaire which has been used. Please note that the questionnaire posed to

respondents was in Dutch, not in English.

Questionnaire research open source software

Thomas van der Luer - student Maastricht University

Dear Madam / Sir,
On this webpage you will find the questionnaire which has been constructed to do
research in the field of open source software. You are visiting this webpage as a

result of the e-mail you have received.

As posed in the e-mail, this research is taking place for my final thesis at
Maastricht University. The problem statement of this thesis is:

“Which factors determine the adoption and use of open source software in
commercial organisations?”

The questionnaire consists of questions related to perceptions towards open source
software. It is not of importance whether your organisation actually uses open

source software.

Your organisation was selected on the basis of a random selection. The name of
your organisation will not be reported in my thesis, nor in any other publication.

Naturally all information you provide will be treated confidentially and will only
serve the purpose of this research. This information will by no means be given to
any third party.

If you wish, the results and the final report can be offered to you in digital format
upon completion. This question will be asked to you at the end of the
questionnaire.

The questionnaire will take about 9 to 13 minutes of your time.

I would like to thank you in advance for your time!

Thomas van der Luer

student International Business
Maastricht University

102

© T. van der Luer 2005

Part 1 // Filter and warm-up questions

a. In what sector is your organization operating ?
o [] Telecommunications
Networkmanagement, pc security, automation services, etc.
Production of machinery
Production of beverages
Production, distribution, and trade in electricity, natural gas, and
hot water
] Production of optical instruments and the like.
] Production of electrical components
] Wholesaler in machinery, apparatus, and accessories
]
]

00o0O

Construction, finishing of buildings
Other

000 0D0

b. What is your responsible position ?
o [] ICT manager
O [] Other: .o

c. What is the annual gross revenue of your organization ?

[1 grossrevenue <€ 2 million
€ 2 million < gross revenue < € 10 million
€ 10 million < gross revenue < € 50 million
gross revenue > € 50 million
unknown

000 0O0Do
e b e]

d. How many people does your entire organization employ ?

o [] employees<10

o [] 10<employees<50
a [] 50<employees <250
a [] employees>250

o [] unknown

103

© T. van der Luer 2005

e. Please indicate whether your organization uses open source software, and if so,
which open source software it uses.

If there is no open source software in use in your organization then you can
also indicate this below. If you, in no way, know what the concept of open
source software stands for, please read this short introduction™® first, or select
the third option.

o []Our organization does not use open source software,
because................

o []Our organization does not use open source software and I am not
familiar with this concept. Therefore, I cannot answer this question.

o []Our organization does use open source software, among which are:
o []Linux operating system

] Free / Open BSD operating system

] MySQL database

] PostgreSQL database

] Interbase database

] KDE Linux desktop environment

] Gnome Linux desktop environment

] Mozilla-Firefox internet browser

] StarOffice/OpenOffice suite

] Apache HTTP / webserver

] PHP programming language

] Perl programming language

] Squid proxy server and web cache

] Open source content management system (CMS)

] Other open source software namely:ooee.

O 0O 0O 0O 00O OO OO OO O0OO0

PLEASE NOTE:

If you choose option 1:

You indicated that your organization does not use open source software but that you are
familiar with the concept of open source software. Therefore, I would like to ask you to
complete the questionnaire and continue with part 2.

If you choose option 2:

If you indicated at the last question (question e) that your organization does not use open
source software and you are not familiar with this concept, and therefore could not answer
the question (option 2), then you don’t have to answer the following questions and you can
directly go to part 8.

4> A short introduction to open source software and the concept of open source was provided.

104

© T. van der Luer 2005

Part 2 // Organizational characteristics

IS slack resources and budget

a.

What is, roughly, the budget for information communication technology (ICT)
expenses as a percentage of the revenue?

[11-3% of the revenue

[]4-6% of the revenue

[]7-10% of the revenue

[] more than 10% of the revenue
[]unknown

0O00O0OD

The allocated ICT budget is sufficient to compensate for all expenses of the [CT
department

Strongly disagree Disagree Neutral Agree Strongly agree

How many people work, roughly, in the ICT department of your organization ?
a 0

1-2

3-9

1025

>25

unknown

| Iy S W

The number of people available to the ICT department to properly perform all
tasks is sufficient

Strongly disagree Disagree Neutral Agree Strongly agree

IT in relation to the business strategy

a.

Information technology is of importance in shaping and executing current business
strategies of your organization

Strongly disagree Disagree Neutral Agree Strongly agree

105

© T. van der Luer 2005

Part 3 // Ranking of software characteristics

a. When you buy software, what are, in general, important factors that affect your
choice of software?

Please grade each of the options below, where:
1 = totally not important

2 = not important

3 =neutral

4 = important

5 = very important

Ooo0oo0DO0O000O0 00O

[B s B s B s B s Y s B s W s B e s B s W |

] Compatibility with existing applications and ICT infrastructure
] Complexity of the software

] Possibility to test the software

] The license the software is distributed with

] The associated, direct and indirect, switching costs

] The costs of the hardware the software requires to operate

] The availability of the source code

] The number of available suppliers and support organizations
] The safety offered by the software

] The reliability of the software

] The continuity which the software supplier offers

] The compliance of the software with open standards

106

© T. van der Luer 2005

Part 4 // Perceived open source software characteristics

Compatibility
a. Open source software has a good fit with enterprise strategic IT architectures
Strongly disagree Disagree Neutral Agree Strongly agree
b. Open source software provides application portability
Strongly disagree Disagree Neutral Agree Strongly agree
¢. Open source software provides data integration
Strongly disagree Disagree Neutral Agree Strongly agree
d. Open source software can coexist with your organization’s key applications, i.e.
applications that your organization is heavily dependent on to achieve it’s business
goals.
Strongly disagree Disagree Neutral Agree Strongly agree
Complexity

a. Open source software is easy to use

Strongly disagree Disagree Neutral Agree Strongly agree
b. Itis easy for me to remember how to perform tasks using open source software

Strongly disagree Disagree Neutral Agree Strongly agree
c. Using open source software requires a lot of mental effort

Strongly disagree Disagree Neutral Agree Strongly agree
d. Using open source software is frustrating

Strongly disagree Disagree Neutral Agree Strongly agree

Triability

a. You, or your organization, had a great deal of opportunity to try various open
source software solutions

Strongly disagree Disagree Neutral Agree Strongly agree

b. You, or your organization, knows where to go to satisfactorily try out various uses
of open source software solutions

107

© T. van der Luer 2005

Strongly disagree Disagree Neutral Agree Strongly agree

c. Before deciding whether to use any open source software, you or your
organization was able to properly try them out.

Strongly disagree Disagree Neutral Agree Strongly agree
d. You were able to experiment with the open source software as necessary
Strongly disagree Disagree Neutral Agree Strongly agree

Relative advantages

Cost issues

a. Costs regarding training of users in using open source software are significant

Strongly disagree Disagree Neutral Agree Strongly agree
b. Costs regarding installation of open source software are significant

Strongly disagree Disagree Neutral Agree Strongly agree
c. Costs regarding integration and customization of open source are significant

Strongly disagree Disagree Neutral Agree Strongly agree
d. Costs regarding consulting and support services of open source are significant

Strongly disagree Disagree Neutral Agree Strongly agree
e. Open source software brings along hardware cost savings

Strongly disagree Disagree Neutral Agree Strongly agree
f. Open source software brings along lower license costs or no license costs

Strongly disagree Disagree Neutral Agree Strongly agree
g. If you would like to comment on the last question, with regard to licensing costs,

Source code availability

a. Itis important that software source code is open and available

Strongly disagree Disagree Neutral Agree Strongly agree

108

© T. van der Luer 2005

b. Your organization is too dependent on its software vendors
Strongly disagree Disagree Neutral Agree Strongly agree

c. Ifyouwould like to comment on the last question, with regard to dependence on
software suppliers, you can do that here:

d. Open source software is capable of providing greater security

Strongly disagree Disagree Neutral Agree Strongly agree
e. Open source software is more reliable than proprietary software

Strongly disagree Disagree Neutral Agree Strongly agree
f. Open source software is more stabile than proprietary software

Strongly disagree Disagree Neutral Agree Strongly agree

g. Closed source software suppliers provide a better long-term perspective than open
source software suppliers

Strongly disagree Disagree Neutral Agree Strongly agree
Open standards compliance

The next statement concerns open standards

Open standards are ICT-standards for the sake of interoperability of
informationsysteminteroperability of informationsystems (that is, the ability for data
exchange between ICT systems). Standards can be ‘open’ or ‘closed’. Open standards
are, among other things, royalty free and the specifications of such standards are
freely available.

(bron: http://www.ososs.nl)

Examples of open standards are HTML, XML, HTTP, FTP, and JPEG.
Examples of closed standards are DOC, PDF, and XLS.

The statement is:

a. Open source software embodies open standards critical to technology advancement
and flexibility

Strongly disagree Disagree Neutral Agree Strongly agree Don’t know

109

© T. van der Luer 2005

Part 5 // Implementation issues

Technology championship
a. Open source software has strong advocates in your organization

Strongly disagree Disagree Neutral Agree Strongly agree

b. There are one or more people in your organization who are pushing for open
source software very enthiousiastically

Strongly disagree Disagree Neutral Agree Strongly agree

c. Nobody in our organization has taken the lead in pushing for adoption of open
source software

Strongly disagree Disagree Neutral Agree Strongly agree

d. There are one or more people here who are pressing for open source software
usage

Strongly disagree Disagree Neutral Agree Strongly agree
Third party support

a. [Itis difficult to find companies that provide support for open source software
(implementation support, training support, consultancy, etc.)

Strongly disagree Disagree Neutral Agree Strongly agree
Top management support

a. Your organization’s top management enthusiastically supports the adoption of
open source software

Strongly disagree Disagree Neutral Agree Strongly agree

b. Your organization’s top management has allocated enough resources for adoption
of open source software

Strongly disagree Disagree Neutral Agree Strongly agree

c. Your organization’s top management actively encourages employees to use open
source software in their daily tasks

Strongly disagree Disagree Neutral Agree Strongly agree

110

© T. van der Luer 2005

Part 6 // Compatibility of work, tasks, and capabilities with OSS

a.

There is few open source software which offers the required functionality
Strongly disagree ~ Disagree Neutral Agree Strongly agree

The structure and flow of open source software matches well with the tasks it is
supposed to support, i.e. it requires no or small procedural changes

Strongly disagree =~ Disagree Neutral Agree Strongly agree

There is enough diversity in the kind of open source software available, i.e. for most
of your organization’s software needs there is an applicable and satisfying open source
solution

Strongly disagree Disagree Neutral Agree Strongly agree

Open source software requires the same skills as existing software solutions within
your organization.

Strongly disagree Disagree Neutral Agree Strongly agree

Part 7 // Adoption environment: network externalities

a.

The size of the (on-line) communities of open source software used within your
organization is significant

Strongly disagree Disagree Neutral Agree Strongly agree

Which of the following operating systems were operationally used on servers in your
organization during the last five years?

o []Unix

o [] Windows

o []Linux

a []Other

o [] Your organization does not employ any servers

Could you please indicate, roughly, the percentage share of installations of the
following operating systems on the total number of servers employed by your
organization during the last five years

o []% Unix
[1% Windows
[1% Linux
[]% Other
[] Not applicable
[] Unknown

000 0DO

111

© T. van der Luer 2005

Part 8 // Finalization

This was the last question. If you have any other remarks, then you can provide them below.

If you would like to receive the results of this research, please provide your e-mail address
below. You will receive the opportunity to download the report when finished.

Part 9 // End
The questionnaire is completed.

Your answers have been processed.

The report will be due shortly.

If you submitted your e-mail address you will receive a message when the report is finished
and can be downloaded.

Thank you for your time and effort!

112

© T. van der Luer 2005

Appendix H: Selection of independent variables

The selection was based on the following considerations:

o The source of the constructs:
o previous research vs. own constructs
o multiple item constructs vs. single item constructs
The correlation between the independent variables
The comments provided by the respondents in case of non-adoption
The theoretical importance following from chapter 3

00D

Often
mentioned in
comments?

Not
Correlated

Theoretical Score &
significance Selection

Variable

Task compatibility

Skill compatibility

Compatiblity

Complexity

Triability

Switching costs

Hardware costs

Software costs

Supplier independence

Safety

Reliability

Stability

Continuity

Open standards compliance

Technology championship

Third party support

Top management support

Shortage of IS budget and
slack of IS HR

Slack of financial resources

IT in business strategy

Community size

Platform standards

113

© T. van der Luer 2005

Appendix I: Hypothesized relationship of OSS licenses

Chapter one showed that OSS is available under many licenses which all adhere to guidelines
set by the Open Source Initiative. The license under which an OSS product is available can
limit its potential. Any license (GPL, LGPL) which includes so-called Copyleft or viral
aspects, is not very attractive to invest in for a firm, since the software has to be ported back
to the open source community, as defined in the license. OSS under these kind of restrictive
licenses would therefore be merely useful for end-users or only for those firms that have to
make minor adaptations. It would not be attractive to heavily invest, adapt or expand such
software since it would not provide any competitive advantage to the firm. “These restrictions
may therefore constrain commercialization of OSS applications” (Stewart, Ammeter &
Maruping, 2005).

OSS under such licenses as the BSD license are not restrictive. This provides
significant opportunities. Software can use BSD licensed software to provide the starting
point for a software package which can be further developed into a (partly or totally)
proprietary solution (West, 2003). Overby, Bharadwaj & Bharadwaj (2004) refer to this
aspect as “Appropriability of benefits”: benefits which might flow back to the public domain
in case of restrictive licenses and which might transfer to the firm when considering non-
restrictive licenses. For that reason it is reasoned that:

Hypothesis: Copyleft and viral licenses are negatively associated with OSS adoption

114

© T. van der Luer 2005

Appendix J: SPSS Output

Perceived importance of innovation characteristics

Group Statistics
| Adopted oss N Mean Std. Deviation | Std. Error Mean
compatibility 0 35 4,43 ,655 111
1 48 4,19 ,734 ,106
complexity 0 35 3,51 ,818 ,138
1 48 3,56 ,769 111
triability 0 35 4,00 ,907 ,153
1 48 3,77 ,751 ,108
license agreement 0 35 3,49 1,173 ,198
1 48 3,44 ,897 ,129
switching costs 0 35 411 ,718 121
1 48 3,92 767 111
hardware costs 0 35 3,94 ,684 ,116
1 48 3,79 ,874 ,126
source code availability 0 35 2,34 1,056 178
1 48 2,77 ,973 ,140
suppliers and support 0 35 3,69 ,993 ,168
1 48 3,33 ,907 ,131
safety 0 35 4,37 ,547 ,092
1 48 417 ,663 ,096
reliability 0 35 4,66 ,482 ,081
1 48 4,48 ,505 ,073
continuity 0 35 4,63 ,490 ,083
1 48 4,15 ,652 ,094

115

Luer 2005

Independent Samples Test

Levene's Test for

Equality of Variances

t-t st for Equality of Means

Sig. Mean Std. Error | 95% Confidence |
F Sig. t df (2-tailed) Difference Difference of the Differer
Lower 9
Equal variances assumed
,020 ,889 1,546 81 ,126 ,241 ,156 -,069 .
Equal variances not assumed
1,574 77,676 ,120 ,241 ,153 -,064 .
Equal variances assumed
,258 ,613 -,275 81 ,784 -,048 ,176 -,398 ,
Equal variances not assumed
-,272 70,723 ,786 -,048 A77 -,402 ,
Equal variances assumed
,192 ,662 1,257 81 ,212 ,229 ,182 -,134 .
Equal variances not assumed
1,220 64,729 227 ,229 ,188 -,146 ,
nt Equal variances assumed
2,752 ,101 ,212 81 ,832 ,048 ,227 -,404 .
Equal variances not assumed
,204 61,152 ,839 ,048 ,237 -,425 .
Equal variances assumed
,018 ,893 1,190 81 ,237 ,198 ,166 -,133 .
Equal variances not assumed
1,203 76,034 ,233 ,198 ,164 -,130 .
Equal variances assumed
3,878 ,052 ,851 81 ,398 ,151 178 -,202 .
Equal variances not assumed
,884 80,564 379 ,151 71 -,189 ,
ilability ~ Equal variances assumed
,696 ,407 -1,909 81 ,060 -,428 ,224 -,874 |
Equal variances not assumed
-1,885 69,789 ,064 -,428 227 -,881 ,
pport Equal variances assumed ,
,023 ,879 1,679 81 ,097 ,352 ,210 -,065 ,
Equal variances not assumed ,
1,655 69,366 ,102 ,352 ,213 -,072 ,
Equal variances assumed
,043 ,836 1,493 81 ,139 ,205 137 -,068 ,
Equal variances not assumed
1,539 79,704 ,128 ,205 ,133 -,060 ,
Equal variances assumed
4,826 ,031 1,617 81 ,110 178 ,110 -,041 .
Equal variances not assumed
1,629 75,330 ,107 178 ,109 -,040 .
Equal variances assumed ,
,003 ,957 3,684 81 ,000 ,483 131 ,222 ,
Equal variances not assumed 3.850 80.904 ,000 483 125 233 '

116

© T. van der Luer 2005

Logistic regression on original 8 selected variables
Block 0: Beginning Block

Iteration History(a,b,c)

Coefficients
-2 Log
Iteration likelihood Constant
Step0 1 113,018 313
2 113,018 316
3 113,018 ,316

a Constant is included in the model.

b Initial -2 Log Likelihood: 113,018
¢ Estimation terminated at iteration number 3 because parameter estimates changed by less than ,001.

Classification Table(a,b)

Predicted
Observed Adopted OSS
Percentage
0 1 Correct
Step 0 Adopted OSS 0 0 35 ,0
1 0 48 100,0
Overall Percentage 57,8

a Constant is included in the model.
b The cut value is ,570

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

| Chi-square df Sig.
Step1 Step 53,617 8 ,000
Block 53,617 8 ,000
Model 53,617 8 ,000
Model Summary
-2 Log Cox & Snell | Nagelkerke R
Step likelihood R Square Square
1 59,401(a) 476 ,640

Hosmer and Lemeshow Test

Step

Chi-square

df

Sig.

9,976

,267

117

a Estimation terminated at iteration number 7 because parameter estimates changed by less than ,001.

© T. van der Luer 2005

Classification Table (a)

Predicted
Observed Adopted OSS
Percentage
0 1 Correct
Step 1 Adopted OSS 0 34 1 97,1
1 11 37 77,1
Overall Percentage 85,5
a The cut value is ,570
Variables in the Equation
B S.E. Wald df Sig. Exp(B)
Step 1(a) ~ Compatibility 3,093 1,062 8,475 1 ,004 22,040
Triability 1,497 ,688 4,729 1 ,030 4,466
Software costs 455 ,556 671 1 413 1,577
Continuity
-,569 ,548 1,077 1 ,299 ,566
Thiird party support ,194 ,567 17 1 ,732 1,214
Top management ,025 572 ,002 1 ,965 1,026
Task compatibility 1,200 ,667 3,232 1 ,072 3,320
Skill compatibility -,216 446 ,234 1 ,628 ,806
Constant -17,317 4,566 14,381 1 ,000 ,000
a All variables entered at step 1
Step number: 1 - The Cut Value is ,57
Observed Groups and Predicted Probabilities
20 ¢ 13
& &
& 1
F & 1
R 15 § 14
E & 1
Q Nad 1
U & 1
E 10 ¢ 1¢
N & 1
C & 1 1
Y & 0 1
5 §0 0 1148
&0 1 0 1 1
&0 0 0 0 01 0 1011 11 1 111&
&0 000 0 000 0 O 1 1 00 00 000010 1 01 111 111 111&

Predicted

444203304300 83¢0800383048308080830430840023080830808303080300303080830038

43338
Prob: 0 , 25

;5

;75

1

Group: 00000000000000000000000000000000001111111111111121121111111111

118

© T. van der Luer 2005
Alternative Logistic regression 1: Enter technology championship

Iteration History(a,b,c,d)

It. -2LL Coefficients
Software | Continuit | Third party | Task Skill Technology

Constant | Triability costs y support comp. comp. champion. Comp.
1 71,201 -6,918 ,685 ,181 -,132 ,087 456 -,063 ,199 ,844
2 61,361 | -11,674 ,999 ,344 -,278 ,131 , 743 -,064 ,367 1,576
3 58,330 | -15,345 1,206 436 -,506 ,228 ,960 -,107 514 2,323
4 57,831 | -17,337 1,320 ,469 -,668 315 1,068 -,157 ,600 2,792
S 57,811 | -17,819 1,349 476 -,709 ,338 1,093 -,170 ,621 2,909
6 57,811 | -17,841 1,350 476 -, 710 ,338 1,094 =171 ,622 2,915
7 57,811 | -17,841 1,350 476 -, 710 ,338 1,094 =171 ,622 2,915

a Method: Enter
b Initial -2 Log Likelihood: 113,018

Model Summary

-2 Log Cox & Snell | Nagelkerke R
Step likelihood R Square Square

1 57,811(a) ,486 ,653
a Estimation terminated at iteration number 7 because parameter estimates changed by less than ,001.

Hosmer and Lemeshow Test

Step Chi-square df Sig.
1 10,305 8 244

Classification Table(a)

Predicted
Observed Adopted OSS Percentage
0 1 Correct
Step 1 Adopted OSS 0 33 2 94,3
1 10 38 79,2
Overall Percentage 85,5
a The cut value is ,570
Variables in the Equation
B S.E. Wald df Sig. Exp(B)
Step 1(a) Triability 1,350 677 3,977 1 ,046 3,857
Software 476 | 574 | 690 1 406 1610
costs
Continuity -,710 614 1,338 1 247 491
3rd party 338 | 569 | 354 1 552 1403
support
Task comp. 1,094 674 2,633 1 ,105 2,985
Skill comp. - 171 446 147 1 ,702 ,843
Techn. 622 | 511 | 1479 1 ,224 1,862
champ.
Compatibility | 2,915 1,086 | 7,210 1 ,007 18,445
Constant 17,841 | 4,629 | 14,854 1 ,000 ,000

a All variables entered at step 1.

119

© T. van der Luer 2005

Alternative Logistic regression 2: Enter software quality

Iteration History(a,c)

It. -2LL Coefficients

Software Third party Task Skill Softw.

Constant Triability costs Continuity support comp. comp. | Comp. quality

1 71,734 -6,871 778 176 -,138 ,025 ,554 -,086 ,983 -,069

2 62,349 | -11,704 1,130 ,332 -,264 ,027 ,835 -,089 1,745 ,089

3 59,479 | -15,584 1,343 438 -,458 111 1,018 =121 2,515 ,257

4 59,053 | -17,617 1,446 ,484 -,575 ,190 1,107 -162 | 2,977 324

S 59,040 | -18,045 1,467 ,493 -,599 ,209 1,126 -,174 | 3,080 ,334

6 59,040 | -18,061 1,468 ,493 -,600 ,210 1,127 -174 | 3,084 ,334

7 59,040 | -18,061 1,468 ,493 -,600 ,210 1,127 -174 | 3,084 334

a Method: Enter

c Initial -2 Log Likelihood: 113,018

Model Summary

-2 Log Cox & Snell | Nagelkerke R
Step likelihood R Square Square
1 59,040(a) A78 ,643

a Estimation terminated at iteration number 7 because parameter estimates changed by less than ,001.

Hosmer and Lemeshow Test

Step Chi-square df Sig.
1 7,227 8 512
Classification Table(a)
Predicted
Observed Adopted OSS Percentage
0 1 Correct
Step 1 Adopted OSS 0 33 2 94,3
1 9 39 81,3
Overall Percentage 86,7
a The cut value is ,570
Variables in the Equation
B S.E. Wald df Sig. Exp(B)
Step 1(a) Triability 1,468 ,659 4,959 1 ,026 4,339
Software 493 566 759 1 384 | 1638
costs
Continuity -,600 ,558 1,155 1 ,282 ,549
Third party
support ,210 ,561 ,140 1 ,708 1,234
Task comp. 1,127 ,674 2,800 1 ,094 3,086
Skill comp. - 174 444 ,154 1 ,695 ,840
Compatibility | 3,084 1,062 8,431 1 ,004 21,853
Software 334 559 356 1 551 | 1,396
quality
Constant -18,061 | 4,783 14,257 1 ,000 ,000

a All variables entered at step

120

© T. van der Luer 2005

121

